This question paper contains 5 printed pages]

L-150-2019

FACULTY OF SCIENCE

M.Sc. (First Year) (First Semester) EXAMINATION

MARCH/APRIL, 2019

(CBCS Pattern)

CHEMISTRY

Paper III, CH-413

(Physical Chemistry—I)

(Friday, 26-4-2019)

Time-3 Hours

Maximum Marks—75

Time : 10.00 a.m. to 1.00 p.m.

N.B. :- (i) Attempt All questions.

- (*ii*) Use of log-table and calculator is allowed.
- (*iii*) Solve Q. No. 5(A), MCQ in one-attempt only.

Given : (1) $h = 6.626 \times 10^{-34}$ Js.

- (2) Mass of an electron, m_e = 9.109 × 10⁻³¹ kg.
- (3) $c = 3 \times 10^8 \text{ ms}^{-1}$.
- (4) $R = 8.314 \text{ JK}^{-1} \text{ mole}^{-1}$.
- (5) N = 6.022×10^{23} molecules.
- (6) Boltzmann constant, $k = 1.38 \times 10^{-23}$ J/K.
- (7) σ for H₂ gas = 2.

1. Solve any *three* :

(a) (i) Describe any three postulates of quantum mechanics.

(*ii*) Explain why $\psi^2 = \psi \cdot \psi^*$; why not $\psi \cdot \psi$?

(b) Write an account of Zeeman splitting and desire the expression of wave equation for Hydrogen atom.

P.T.O.

15

(c) Explain a *three* component system involving one pair of partially miscible liquids with a suitable phase diagram.

(2)

- (d) Calculate the ionic strength of :
 - (*i*) 0.01 m aluminium chloride
 - (*ii*) A solution of 0.01 m HCl + 0.02 m CaCl₂.
- (e) Explain the concept of Lattice energy with reference to the formation of sodium chloride cyrstal.

2. Solve any three :

- (a) Evaluate the commutators :
 - (*i*) $[L_z, L_{\pm}] = \pm \hbar L_{\pm}$
 - (*ii*) $[\hat{S}^z, S_{\hat{x}}] = 0.$
- (b) Write a note on 'Recapitulation of phase rule and terms involved in it'.

(c) Derive :
$$Q_t = \frac{(2\pi_{mk}T)^{3/2}}{h} \cdot V_t$$

where, $V = L_x + L_y + L_z$, volume of a molecule in three directions. Explain :

- (d) Explain :
 - (i) N and P type semiconductors and
 - (ii) Effect of temperature on N and P-type semiconductor.
- (e) Describe Stern's theory of Electrical double layers.

0.10

- 3. Solve the following :
 - (a) State the Schrödinger's wave equation in polar co-ordinate system and use it to obtain phi-equation, theta equation and radial equation for hydrogen and hydrogen like systems.

Or

Describe a First-order and non-degenerate perturbation theory for the system of H-atom. 8

WΓ

15

(3) L—150—2019

(b) When a particle of mass 9.1×10^{-18} gm in a certain one-dimensional box goes from n = 5 level to n = 2 level, it emits a photon for frequency 6.0×10^{14} s⁻¹. Find the length of the box.

Or

Show that 1s-wave function of H-atom given by $\psi_{1s} = \psi_{1,0,0} = 1/\sqrt{\pi} a_0^{3/2} e^{(-r/a_0)}$.

where a_0 is te Bohr's radius, is normalised. 7

- 4. Solve the following :
 - (a) Describe Debye-Hückel theory for activity coefficient of electrolytic solutions.

Calculate the mean ionic coefficient, $\sqrt{\pm}$ of (*i*) 0.001 M NaCl and (*ii*) 0.01 M BaCl₂; in aqueous solutions at 25°C.

Or

Why $\lim_{p \to 0} \frac{\mathbf{F}}{\mathbf{P}} = 1$?

Explain the graphical method for determination of fugacity of real gases. 7

(b) Calculate the characteristic rotational temperature and rotational partition function for H₂ gas at 2727°C given that the moment of inertia of hydrogen gas molecule at this temperature is 4.6033×10^{-48} kgm².

Or

Explain chemical potential, partial molar volume and partial molar heat content with their significances. 8

P.T.O.

WΓ

 $\mathbf{5}$

- 5. (A) Select the *correct* alternatives :
 - (*i*) K.E. of a particle in terms of angular momentum and moment of inertia is

(a) K.E. =
$$\frac{I^2}{2L}$$

(b) $\frac{L^2}{2I}$
(c) L^2I
(d) $2L^2I$

- (*ii*) In three component system Tie-lines are not used in the region of
 - (a) 3-phase
 - (b) 2-phase
 - (c) 1-phase
 - (d) Both (a) and (c)
- *(iv)* At low temperature which of the following expression is correct ?
 - (a) $q_{\text{vib.}} = \frac{T}{Q_{vib}} e^{-Q_{\text{vib}}/2T}$
 - (b) $q_{\text{vib.}} = e^{-Q_{\text{vib.}}/2T}$
 - (c) $q_{\text{vib.}} = e^{-Q_{\text{vib.}}/T}$
 - (d) None of the above
- (iv) Transition metal compounds generally exhibit
 - (a) Metal excess defects
 - (b) Metal deficiency defects
 - (c) Stoichiometric defects
 - (d) Both (a) and (b)

WT

(v) Intercept of the plot between \wedge_C and \sqrt{C} extrapolated to zero concentration is :

L-150-2019

(5)

- (a) \wedge_v
- $(b) \wedge_0$
- $(c) \wedge_{\infty}$
- (d) Both (b) and (c)
- (B) Write short notes on any two : 10
 - (*i*) Lippmann equations
 - (ii) Wine effect
 - (iii) Two-solid and one-liquid component Eutectic systems
 - (*iv*) Spin-orbit coupling

L-150-2019