This question paper contains 5 printed pages]
L—150—2019
FACULTY OF SCIENCE
M.Sc. (First Year) (First Semester) EXAMINATION

MARCH/APRIL, 2019
(CBCS Pattern)
CHEMISTRY
Paper III, CH-413
(Physical Chemistry-I)
(Friday, 26-4-2019)
Time : 10.00 a.m. to 1.00 p.m.
Time-3 Hours
Maximum Marks-75
N.B. :- (i) Attempt All questions.
(ii) Use of log-table and calculator is allowed.
(iii) Solve Q. No. 5(A), MCQ in one-attempt only.

Given : (1) $h=6.626 \times 10^{-34} \mathrm{Js}$.
(2) Mass of an electron, $m_{e}=9.109 \times 10^{-31} \mathrm{~kg}$.
(3) $c=3 \times 10^{8} \mathrm{~ms}^{-1}$.
(4) $\quad \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$.
(5) $\mathrm{N}=6.022 \times 10^{23}$ molecules.
(6) Boltzmann constant, $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.
(7) $\quad \sigma$ for H_{2} gas $=2$.

1. Solve any three :
(a) (i) Describe any three postulates of quantum mechanics.
(ii) Explain why $\psi^{2}=\psi \cdot \psi^{*}$; why not $\psi \cdot \psi$?
(b) Write an account of Zeeman splitting and desire the expression of wave equation for Hydrogen atom.
(c) Explain a three component system involving one pair of partially miscible liquids with a suitable phase diagram.
(d) Calculate the ionic strength of :
(i) 0.01 m aluminium chloride
(ii) A solution of $0.01 \mathrm{~m} \mathrm{HCl}+0.02 \mathrm{~m} \mathrm{CaCl} 2$.
(e) Explain the concept of Lattice energy with reference to the formation of sodium chloride cyrstal.
2. Solve any three :
(a) Evaluate the commutators :
(i) $\left[\mathrm{L}_{z}, \mathrm{~L}_{ \pm}\right]= \pm \hbar \mathrm{L}_{ \pm}$
(ii) $\left[\hat{\mathrm{S}}^{z}, \mathrm{~S}_{\hat{x}}\right]=0$.
(b) Write a note on 'Recapitulation of phase rule and terms involved in it'.
(c) Derive: $\mathrm{Q}_{t}=\frac{\left(2 \pi_{m k} \mathrm{~T}\right)^{3 / 2}}{h} \cdot \mathrm{~V}$.
where, $\mathrm{V}=\mathrm{L}_{x}+\mathrm{L}_{y}+\mathrm{L}_{z}$, volume of a molecule in three directions.
(d) Explain :
(i) N and P type semiconductors and
(ii) Effect of temperature on N and P-type semiconductor.
(e) Describe Stern's theory of Electrical double layers.
3. Solve the following :
(a) State the Schrödinger's wave equation in polar co-ordinate system and use it to obtain phi-equation, theta equation and radial equation for hydrogen and hydrogen like systems.
Or

Describe a First-order and non-degenerate perturbation theory for the system of H -atom.
(b) When a particle of mass $9.1 \times 10^{-18} \mathrm{gm}$ in a certain one-dimensional box goes from $n=5$ level to $n=2$ level, it emits a photon for frequency $6.0 \times 10^{14} \mathrm{~s}^{-1}$. Find the length of the box.

Or

Show that 1 s-wave function of H -atom given by $\psi_{1 \mathrm{~s}}=\psi_{1,0,0}=$ $1 / \sqrt{\pi} a_{0}^{3 / 2} . e^{\left(-r / a_{0}\right)}$.
where a_{0} is te Bohr's radius, is normalised.
4. Solve the following :
(a) Describe Debye-Hückel theory for activity coefficient of electrolytic solutions.

Calculate the mean ionic coefficient, $\sqrt{ \pm}$ of (i) 0.001 M NaCl and (ii) $0.01 \mathrm{M} \mathrm{BaCl}_{2}$; in aqueous solutions at $25^{\circ} \mathrm{C}$.

Or

Why $\lim _{p \rightarrow 0} \frac{\mathrm{~F}}{\mathrm{P}}=1$?
Explain the graphical method for determination of fugacity of real gases.
(b) Calculate the characteristic rotational temperature and rotational partition function for H_{2} gas at $2727^{\circ} \mathrm{C}$ given that the moment of inertia of hydrogen gas molecule at this temperature is $4.6033 \times 10^{-48} \mathrm{kgm}^{2}$.

Or

Explain chemical potential, partial molar volume and partial molar heat content with their significances.
5. (A) Select the correct alternatives :
(i) K.E. of a particle in terms of angular momentum and moment of inertia is \qquad
(a) K.E. $=\frac{I^{2}}{2 \mathrm{~L}}$
(b) $\frac{\mathrm{L}^{2}}{2 \mathrm{I}}$
(c) $\mathrm{L}^{2} \mathrm{I}$
(d) $2 \mathrm{~L}^{2} \mathrm{I}$
(ii) In three component system Tie-lines are not used in the region of \qquad .
(a) 3-phase
(b) 2-phase
(c) 1-phase
(d) Both (a) and (c)
(iv) At low temperature which of the following expression is correct ?
(a) $\quad q_{\mathrm{vib} .}=\frac{\mathrm{T}}{\mathrm{Q}_{v i b}} e^{-\mathrm{Q}_{\mathrm{vib}} / 2 \mathrm{~T}}$
(b) $\quad q_{\text {vib. }}=e^{-\mathrm{Q}_{\text {vib. }} .2 \mathrm{~T}}$
(c) $q_{\text {vib. }}=e^{-\mathrm{Q}_{\mathrm{vib}} . / \mathrm{T}}$
(d) None of the above
(iv) Transition metal compounds generally exhibit \qquad
(a) Metal excess defects
(b) Metal deficiency defects
(c) Stoichiometric defects
(d) Both (a) and (b)
(v) Intercept of the plot between \wedge_{C} and $\sqrt{\mathrm{C}}$ extrapolated to zero concentration is :
(a) \wedge_{v}
(b) $\quad \wedge_{0}$
(c) $\quad \wedge_{\infty}$
(d) Both (b) and (c)
(B) Write short notes on any two :
(i) Lippmann equations
(ii) Wine effect
(iii) Two-solid and one-liquid component Eutectic systems (iv) Spin-orbit coupling

