This question paper contains 4 printed pages]

AI—283—2017

FACULTY OF SCIENCE

M.Sc. (Second Semester) EXAMINATION OCTOBER/NOVEMBER, 2017

CHEMISTRY

Paper (CH-424)

(Principles of Spectroscopy)

(Saturday, 18-11-2017)

Time: 10.00 a.m. to 1.00 p.m.

Time—Three Hours

Maximum Marks—75

- N.B. := (i) Attempt All questions.
 - (ii) Use of calculator or logarithmic table is allowed.
 - (iii) Useful constants:

 $c = 3 \times 10^8 \text{ m/s}$

 $h = 6.626 \times 10^{-34} \text{ Js.}$

1. Answer any three of the following:

 $3 \times 5 = 15$

- (a) Give an account of transition probability.
- (b) The internuclear distance of CO molecule is 1.13 Å. Caculate the energy of the first excited rotational level. (12 C = 1.99 × 10 $^{-26}$ kg, 16 O = $^{2.66}$ × 10 C kg).
- (c) State and explain stark effect.
- (d) Give the chemical information obtained from ESCA.
- (e) Explain factors influencing coupling constant T.
- 2. Answer any three of the following:

15

- (a) Give an account of polarisation and scattering of electromagnetic radiation.
- (b) Calculate the vibrational of the C—H bond if the force constant for the single bond is 5×10^5 dynes cm⁻¹.

P.T.O.

(2)

AI - 283 - 2017

WT

- 5. (A) Select the *correct* alternative for the following:
- 5
- (i) The absorbance of solution with transmittance 0.309 is:
 - (a) 0.51
 - (*b*) 0.41
 - (c) 5.1
 - (*d*) 4.1
- (ii) The oblate symmetric top molecule in which the moment of inertia is:
 - (a) $I_B \neq I_C = I_A$
 - $(b) \qquad {\rm I_B} = {\rm I_C} < {\rm I_A}$
 - (c) $I_{\rm B} = I_{\rm C} > I_{\rm A}$
 - (d) $I_B = I_C = I_A$
- (iii) The actual value of nuclear spin depends upon:
 - (a) mass number
 - (b) atomic number
 - (c) both (a) and (b)
 - (d) shielding effect
- (iv) A prolate charge distribution with its axis parallel to z-axis will give :
 - (a) Positive quadrapole movement
 - (b) Negative quadrapole movement
 - (c) Zero
 - (d) None of the above

P.T.O.

WT (4)	AI—283—2017
--------	-------------

- (v) When an unpaired electron interact with three equivalent protons, how many number of lines are observed in e.s.r spectrum?
 - (*a*) 1
 - (*b*) 2
 - (c) 3
 - (*d*) 4
- (B) Write short notes on any two of the following:

10

- (i) Nuclear resonance
- (ii) Charge transfer spectra
- (iii) Karmer's degeneracy.