This question paper contains 3 printed pages]

AY-283-2018

FACULTY OF SCIENCE

M.Sc. (Second Semester) EXAMINATION MARCH/APRIL, 2018

(CBCS Pattern)

CHEMISTRY

[CH-424]

[Principles of Spectroscopy]

(Wednesday, 18-4-2018)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—75

N.B. := (i) Attempt All questions.

- (ii) Use of calculator or logarithmic table is allowed.
- (iii) Constant:

 $c = 3 \times 10^8 \text{m/s}$

 $h = 6.626 \times 10^{-34} \text{ Js.}$

1. Attempt any three of the following:

15

- (a) Explain reflection and refraction of light radiation.
- (b) What condition is required for the molecules to show mivrowave spectra? Explain the relative intensities of rotational spectral lines.
- (c) The force constant fo H-F molecule is 970 Nm⁻¹. If the reduced mass is 1.59×10^{-27} kg, then determine the fundamental vibrational frequency.
- (d) How will you obtain photoelectron spectrum?
- (e) Enumerate the basic principle involved in NMR spertroscopy. Explain nuclear resonance.
- 2. Attempt any three of the following:

15

- (a) Explain uncertainty relation and natural line width.
- (b) The pure rotational spectrum of diatomic molecule consists of series of equally spaced lines separated by 320m^{-1} . Calculate the internuclear distance if the reduced mass of this molecule is 1.67×10^{-27} kg.

P.T.O.

						10000 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
WT				(3)		AY—283—2018	
5.	(A)	Selec	t the	correct alternative	for the f	ollowing multiple choice	
		quest	ions :			N	
		(<i>i</i>)	The intensity of rotational spectral lines is determined by:				
			(a)	Degeneracy of rata	itional leve		
			(<i>b</i>)	Influence of nulear spin on population			
			(<i>c</i>)	Both (a) and (b)			
			(<i>d</i>)	None of the above			
		(ii)	As bond length decreases, force constant:				
			(a)	Increases	(<i>b</i>)	Decreases	
			(<i>c</i>)	Remains unaffected	\mathbf{d}	Becomes zero	
		(iii)	C^{13} n,m,r, spectra was first studied in 1957 by :				
			(a)	P-C. Lauterbur	(<i>b</i>)	Hansen	
			(c)	Packard	(d)	Purcell	
		(iv)	NQR spectra is observed in :				
		Ŕ	(a)	1-R	3,42,0,42	U-V	
		STATE OF	(c)	Visible	(d)	Radio wave	
	S	(v)	The removal of degeneracy of spin states by the internal magnetic field of paramagnetic electron is termed as:				
		Si COL	(a)	Fine splitting	YONOVO	Zero-field splitting	
	26/27/0	S. S. S. S.	(c)	Both (a) and (b)	(d)	Hyperfine spliting	

(B) Write notes on any two of the following:(a) Applications of microwave spectroscopy.

(b) Photoelectric effect.

(c) Radiative and Non-Radiative transitions.

10