This question paper contains 4 printed pages] ## AG-190-2018 ## FACULTY OF SCIENCE ## M.Sc. (First Year) (Second Semester) EXAMINATION ## **NOVEMBER/DECEMBER, 2018** (CBCS Pattern) **CHEMISTRY** Paper VII (CH-423) (Physical Chemistry) (Saturday, 1-12-2018) Time: 10.00 a.m. to 1.00 p.m. Time—3 Hours Maximum Marks—75 N.B. := (i) Attempt All questions. - (ii) Use of calculator and logarithm table is allowed. - (iii) Attempt Q. No. 5(A) at once only. $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$ $R = 0.08206 \text{ lit atm } K^{-1} \text{ mol}^{-1}$ 1. Attempt any *three* of the following: - 15 - (a) Explain the various factors affecting the overpotential. - (b) Define surface tension. How will you determine surface tension by capillary rise method? - (c) Give an account of oscillatory reactions. - (d) At 25°C, the plot of $\frac{\pi}{c}$ versus c gave an intercept 3.2×10^{-3} atm kg⁻¹. Calculate the molar mass. - (e) How will you study the kinetics of fast reactions by flow method? P.T.O. $M_1 = 15000$ and $M_2 = 150000$. Calculate \overline{M}_w and \overline{M}_n . A sample of a high polymer consists of equal number of molecules with | WT | | | | (3) | 9 | A COUNTY | AG—190—2018 | |----|-----------|--|--|---|--------------|--------------|-------------| | 5. | (A) | Select | the c | orrect alternative from | m the follow | ing MC | Q's : 5 | | | | <i>(i)</i> | The rate constant of a first order reaction is 6.93×10^{-2} sec ⁻¹ . The half life time of the reaction is : | | | | | | | | | | | | | | | | | | (<i>a</i>) | 0.1 sec | | SONY
NXXX | | | | | | (<i>b</i>) | 1 sec | | | | | | | | (c) | 10 sec | | | | | | | | (d) | 100 sec | | | | | | | (ii) | The polarographic technique of analysis was devised by: | | | | | | | | | (a) | Sir C.V. Raman | | | | | | | | (b) | Ramchandran | | | | | | | | (c) | Berzelius | | | | | | | | (d) | Heyrovsky | | V/7/29 | | | | | (iii) | For a | polydispersed polym | er sample : | Sylvin | | | | | | (a) | $\bar{\mathbf{M}}_w > \bar{\mathbf{M}}_n$ | | | | | | 1505 | | (b) | $\mathbf{\bar{M}}_w = \mathbf{\bar{M}}_n$ | A A GO | | | | | 13 8 10 C | 01.585
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51.855
51 | (c) | $\bar{\mathbf{M}}_w < \bar{\mathbf{M}}_n$ | S. C. W. L. | | | | | | | (d) | None of the above | 6P. | | | | | | (<i>iv</i>) | Physical adsorption takes place with the formation of | | | | | | | | | layer whereas chemical adsorption with the formation of | | | | | | | | | layer. | | | | | | | | | (a) | Monomolecular, mul | timolecular | | | | | | | (b) | Multimolecular, mon | omolucular | | | | | | | (c) | Monomolecular, mon | omolecular | | | | | | | (d) | Multimolecular, mul | timolecular | | | | | | 12 C C C C C C C C C C C C C C C C C C C | S. O. V. | | | | Р.Т.О. | WT (4) AG—190—2018 - (v) The SI unit of surface tension is: - (a) Nm s⁻¹ - (b) Nm s⁻² - (c) Kg s⁻¹ - (d) Kg s⁻² - (B) Write short notes on any two of the following: 10 - (i) Surface film on the liquid - (ii) Effect of the solvent on the rate of reaction - (iii) Thermodynamics of micellisation. AG-190-2018