This question paper contains 4 printed pages]

AG-283-2018

FACULTY OF SCIENCE

M.Sc. (Second Semester) EXAMINATION

NOVEMBER/DECEMBER, 2018

(CBCS Pattern)

CHEMISTRY

Paper CH-424

(Principles of Spectroscopy)

(Tuesday, 4-12-2018)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—75

N.B. := (i) Attempt All questions.

- (ii) Use of calculator or logarithmic table is allowed.
- (iii) Constants:

 $c = 3 \times 10^8 \text{ m/s}$

 $h = 6.626 \times 10^{-34} \text{ Js.}$

- 1. Attempt any three of the following:
 - (a) Give an account of polarization and scattering of light radiation.
 - (b) The molecule H_2 is microwave inactive while HCl is microwave active. Explain. Write a note on nuclear and electron spin interaction.
 - (c) The force constant of H-Br molecule is 420 Nm⁻¹. If the reduced mass is 1.65×10^{-27} kg, determine the fundamental vibrational frequency.
 - (d) Give the applications of ESCA spectroscopy.
 - (e) Give an account of chemical shifts and factors affecting the chemical shifts.

P.T.O.

15

Give an account of spin densities and McConell relationship.

(ii)

	(<i>b</i>)	Explain the coupling constant 'J'. Write down the advantages of FT NMR.		
		(i)	Explain mutual exclusion principle.	
		(ii)	Explain the vibration in polyatomic molecules.	
5.	(A)		ct the <i>correct</i> alternative for the following multiple choice tions:	
		(i)	Symmetric top molecules have:	
			(a) All three moment of inertia are equal	
			(b) Two moment of inertia are equal	
			(c) All moment of inertia are different	
			(d) All moment of inertia are zero	
		(ii)	The vibrational degree of freedom for O_2 molecule is :	
		6	(b) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		(2)		
	E STEP	(iii)	$^{13}\mathrm{C}$ and $^{19}\mathrm{F}$ have nuclear spin equal to :	
	13 25 E		(a) 1/2	
		2000 2000	(b) 1 - C - C - C - C - C - C - C - C - C -	
			(c) (0) () () () () () () () ()	
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		(d) 3/2	
		(iv)	The electric field gradient arises from in the electron distribution about the nucleus.	
	0,00,00		(a) Symmetry	
			(b) Asymmetry	
		2000	(c) Spin in electron distribution	
			(d) None of the above	
0,00		3/1/20		

(3)

WT

AG—283—2018

P.T.O.

WT (4) AG—283—2018

- (v) ${
 m C}^{12}$ and ${
 m O}^{16}$ do not interact with electron because they have :
 - (a) Zero Spin
 - (b) No Nuclear Spin
 - (c) Both (a) and (b)
 - (d) None of the above
- (B) Write notes on any two of the following:

10

- (a) Franck-Condon Principle
- (b) Stark Effect
- (c) Zero field splitting and Kramer's degeneracy.

AG-283-2018