This question paper contains 8 printed pages]

BR-17-2016

FACULTY OF SCIENCE

M.Sc. (Second Year) (Third Semester) EXAMINATION MARCH/APRIL, 2016

(CBCS Course)

CHEMISTRY

Paper CH-531

(Advanced Spectroscopic Methods)

(Wednesday, 16-11-2016)

Time: 2.00 p.m. to 5.00 p.m.

Time—Three Hours

Maximum Marks—75

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) Multiple Choice Questions (MCQ) should be attempted only once on page number three of answer-book with complete answer.
- 1. Attempt any three of the following :

15

- (a) Explain acetyl acetone absorption in H2O $\lambda_{\rm max}$ 274 and in isooctane $\lambda_{\rm max}$ 272 nm.
- (b) Discuss the C=O stretching frequencies of the following compounds:

(i)
$$CH_3 - C - CH = CH_2$$

 1706 cm^{-1}

$$(iv)$$

$$\begin{array}{c}
O \\
C \\
C \\
\hline
1730 \text{ cm}^{-1}
\end{array}$$

1693 cm⁻¹

(c) Explain the role of vibrational motions and energy and dipole moment in vibrational spectroscopy.

2

- (d) TMS is used as internal standard for PMR spectrometry.
- (e) Use of mas spectrometry in identification of halogens in organic compounds.
- 2. Attempt any three of the following:

15

(a) Calculate the value of absorption maxima for the following:

(b) How will you follow the following sequence of the reaction by using IR spectroscopy?

(c) Calculate the force constant in Nm^{-1} of $^{35}Cl_2$.

Given : Fundamental vibration frequency of $^{35}\mathrm{Cl}_2$ is $564.9~\mathrm{cm}^{-1}$.

At. weight of Cl = 35

Avogadro's No. = 6.022×10^{23} grams

(d) Deduce the structure of a compound using NMR spectral data:

Molecular formula : C₈H₇OCl

 δ : 4.25 (S, 6 mm)

7.4 - 7.9 (m, 15 mm).

(e) Explain the metastable ion peak and its application in determination structure of organic compounds.

- 3. Solve the following:
 - (a) An organic compound of molecular formula C₉H₈O exhibits the following spectral data. Identify the structure and justify your answer.

PMR : δ : 6.7 (dd, 1 H, J = 16 Hz and 8Hz)

7.1 - 7.4 (m, 5 H),

7.6 (d, 1 H J = 8 Hz)

10.0 (d, 1 H J = 8 Hz)

 C^{13} NMR : 128(d), 129(d), 131(d), 134(S), 152(d), 160(d), 195(d). 8

Deduce the structure of the compound from the following spectral data:

M.F. $C_{10}H_{12}O_2$

IR: 3050, 1730, 1600, 1570, 1460, 770, 700 cm⁻¹.

 1 H-NMR : 7.3(S, 5H), 4.30(t, 2H) J = 7 Hz, 2.00(S, 3H), 2.93(t, 2H) J = 7 Hz.

Mass: m/z = 65, 91, 149, 164.

(b) How will you distinguish between the following pairs on the basis of IR spectroscopy?

WT

Explain the genesis of the ions in mass spectra:

7

(ii)
$$CH_3$$
— CH_2 — CH — C — CC_2H_5 — $102, 74, 58, 31, 30. NH,$

4. Solve the following:

(a) A compound with MF $C_{16}H_{22}O_4$.

8

IR: 2900(S), 1720(S), 1250, 1120, 740(m).

PMR: δ : 1.0(d, 6H), 2.0(m, 1H)

4.1(d, 2H), 7–7.5(m, 4H)

 ${}^{13}C-NMR:21.63(q)\;28.46(d),\;69.63(t),\;131.7(s),\;130(d),\;133(d),\;170(s).$

Or

Distinguish between the following pairs by using the indicated spectral method:

$$\begin{array}{c|c} OH & OH \\ \hline \\ COCH_3 & \hline \\ -IR \\ \hline \\ COCH_3 \end{array}$$

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

(b) Calculate λ_{max} for the following compound by A.I. Scott rules. 7

Or

A compound C_4H_9NO shows the following PMR spectra deduce its structure.

8 mm. 94 mm 8.1 Coff the Scale)

6 5 4 3 2 0

- 5. (A) Select the *correct* answer from the following Multiple Choice Questions and rewrite complete answer:
 - (i) Which of the following correct basic value of heteroannular diene?
 - (a) 210

(b) 215

(c) 230

(d) 253

(ii)	In IR spectrum a medium band appears at 2720 cm ⁻¹ is a good				
	evidence for the presence of				
	(a)	Ester	(b)	Keto	2,5
	(c)	Ether	(d)	Aldehyde	
(iii)	Number of modes of vibration of trans N_2F_2 are				
	(a)	4	(b)	5	
	(c)	6	(d)	7000000	
(iv)	The ' δ ' scale of $^{13}\text{C-NMR}$ is				
	(a)	0—220 ppm	(b)	0—20 ppm	
S	(c)	0—110 ppm	(d)	0—10 ppm	
(v)	Preser	s spectrum is $1:1$ intensity	y		
01, 12, 12, 12, 12, 12, 12, 12, 12, 12, 1	which indicate presence of halogen atom is				
	(a)	Cl	<i>(b)</i>	Br	
	(c)		(d)	F	
Write	short notes on any two:				0
(a)	Shielding and deshielding effect in PMR				
(b)	McLafferty Rearrangement				
(c)	Types	of electronic transitions	in U	V spectroscopy.	

(B)