This question paper contains 6 printed pages]

BR-18-2016

FACULTY OF SCIENCE

M.Sc. (Second Year) (Third Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

(Revised Course)

CHEMISTRY

Paper CH-531

(Advanced Spectroscopic Methods)

(Wednesday, 16-11-2016)

Time: 2.00 p.m. to 5.00 p.m.

Time—Three Hours

Maximum Marks—50

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
 - (iii) Multiple Choice Questions (MCQs) should be attempted only once on page number three of answer-book with complete answer.
- 1. Attempt any five of the following:

10

- (a) Explain the choice of solvent in UV Spectroscopy.
- (b) Explain mass spectroscopic fragmentation of acetophenone.
- (c) Pentanoic acid gives m/z 60 in mass spectrum. Explain.
- (d) Calculate the number of fundamental modes of vibration in BCl_{4} .
- (e) Enumerate in brief basic principles of ¹³C—NMR spectroscopy.
- (f) O_2 and O_2^+ show ESR spectra. Explain.
- (g) In PMR spectrum, aldehydic proton appears in the far downfield region $(\delta = 9 10 \text{ ppm})$
- (h) The UV spectrum of ethylene shows absorption at 171 nm but butadiene shows absorption at 217 nm.
- 2. Attempt any four of the following:

10

(a) Assign the structure of compound using given PMR data:

Molecular formula : C₁₀H₁₃Cl

 δ 1.57 (S, 6H), δ 3.07 (S, 2H), δ 7.27 (S, 5H).

P.T.O.

- (b) Give the structure of compound $C_{10}H_{20}O$ whose mass shows m/z value of 15, 43, 57, 91, 105 and 148.
- (c) What will be force constant for the bond in N_2 , if fundamental vibrational frequency is $7 \times 10^{-13} \, 5^{-1}$. (Given : N = 14.007)
- (d) Calculate λ_{max} for the following compounds:

(e) Explain the formation ion from the following molecule:

m/e = 177, 91, 90, 77, 65.

(f) Calculate the ESR frequency in MHz of an unpaired electron in magnetic field 0.33 T.

Given:

For free electron, $\delta = 2$

$$\beta = 9.273 \times 10^{-24} \text{ JT}^{-1}$$

$$h = 6.626 \times 10^{-34} \text{ JS}^{-1}$$

3. Attempt any two of the following:

10

(a) An organic compound with $MFC_{11}H_{14}O_2$ shows the following spectral data. Assign the structure and justify the spectral data:

 $13_{\rm C~NMR~\delta~(PPM)}: 58.5~\rm (t),~65~\rm (t),~72.5~\rm (t),~127.8~\rm (d),~127.9~\rm (d),\\ 128.0~\rm (d),~128.5~\rm (d),~132.4~\rm (d),~137.8~\rm (s).$

(b) A compound having molecular formula C_8H_9OBr shows the following NMR spectrum. Deduce its structure.

P.T.O.

(c) An organic compound which elemental analysis is C = 55.8% and H = 7.0% and exhibits the following spectral data:

 $IR = 1765, 1635, 1380, 1220, 985, 950 \text{ cm}^{-1}$

MS(m/z) = 86, 43, 27

PMR (δ) = 2.1 (3H, s), 4.4 (1H, dd, J = 9 and 3 Hz)

4.8 (1H, dd, J = 16 and 3 Hz)

7.2 (1H, dd, J = 16 and 9 Hz)

Assign the structure of compound.

4. Attempt any two of the following:

____1

10

(a) Distinguish between the following pairs by using the indicated spectral method.

and

[PMR]

(b) Explain in detail 1:4:6:4:1 relative intensities in pyrazine radical.

(c) Explain the mossbauer spectra represented by:

Velocity of source in cm \sec^{-1}

Na₂[Fe(CN)₅ NO].

- 5. (A) Select the *correct* answer from the following multiple choice questions and rewrite complete answer:
 - (i) In proton-coupled CMR spectra spin-spin coupling is known as
 - (a) Homonuclear coupling
 - (b) Off resonance coupling
 - (c) Non-decoupled coupling
 - (d) Heteronuclear coupling
 - - (a) UV spectrum
 - (b) IR spectrum
 - (c) CMR spectrum
 - (d) Mass spectrum

P.T.O.

WT		(6) BR—18—201
	(iii)	Mossbauer spectroscopy is the study of emission and reabsorption
		of
		(a) α rays
		(b) β rays
		(c) γ rays
		(d) None of the above
	(iv)	In IR spectrum, due to the presence of strong hydrogen bonding
		the absorption band shifts to
		(a) Higher wave number
		(b) Lower wave number
		(c) Both
		(d) No effect
	(v)	Electromagnetic radiation used in 'H NMR spectroscopy
	6 9	is
	St. Co.	(a) IR
	7	(b) Microwave
		(c) Radio
	2000	(d) None of the above

(B) Write short notes on (any two):

5

- (a) Spin-spin coupling in PMR
- (b) Stretching and bending vibrations in IR-spectroscopy
- (c) Chemical shift in mossbauer spectroscopy.