This question paper contains 8 printed pages]

AI—12—2017

FACULTY OF SCIENCE

M.Sc. (Second Year) (Third Semester) EXAMINATION MARCH/APRIL, 2017

(CBCS Pattern)

CHEMISTRY

Paper (CH-531)

(Advanced Spectroscopic Methods)

(Thursday, 20-4-2017)

Time: 2.00 p.m. to 5.00 p.m.

Time—Three Hours

Maximum Marks—75

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
 - (iii) Multiple choice questions (MCQs) should be attempted only once on page number three of answer-book with complete answer.
- 1. Attempt any three of the following:

15

- (a) Explain how mass spectroscopy is useful to detect halogens in organic compounds.
- (b) Acetophenone, phenol and benzoic acid can be distinguished by the characteristic bands in their IR-Spectra.
- (c) Calculate the number of fundamental modes of vibration in ${
 m C_2F_2}$ and ${
 m BCl_4}^-$.
- (d) In UV spectrum of crotonaldehyde band due to $\pi\to\pi^*$ in petroleum ether appears at λ_{max} 214 nm but the same band in ethanol appears at 220 nm.
- (e) Enumerate in brief basic principles of ¹³C-NMR spectroscopy.

2. Attempt any three of the following:

(*a*)

Partial hydrogenation of triene shown below results into two compounds A and B, having molecular formula $C_{10}H_{14}$ compound. A shows absorption maximum at 235 nm and B shows at 275 nm. Assign the

15

$$\frac{\text{Partial}}{\text{Hydrogenation}} A + B$$

(b) Explain the genesis of the ions for the following:

structures of the A and B compounds.

150, 135, 106, 105, 79, 77.

(c) The following aldehydes exhibits C=O stretching bands at 1666 cm⁻¹, 1700 cm⁻¹ and 1730 cm⁻¹. Assign to the proper aldehyde giving justification:

(d) What will be force constant for the band in N_2 , if fundamental vibrational frequency is $7 \times 10^{13} \text{ s}^{-1}$ (Given : N = 14.007).

(e) How will you differentiate among the three following compounds with the help of ¹³C NMR spectroscopy:

- 3. Solve the following:
 - (a) Distinguish between the following pair by using the indicated spectral data methods:

(i)

(ii)

WT

AI-12-2017

Or

Explain the genesis of the ions:

7

m/e = 117, 91, 90, 77, 65

m/e = 108, 107, 106, 105, 77, 79

(b) A compound with MF $C_{10}H_{12}O$ displays the following spectral data :

IR: $1690, 1600, 1580, 1490, 770, 690 \text{ cm}^{-1}$

PMR : δ_{PPM} : 1.3 (d, 6H),

5.3 (Septet, 1H)

7.3 - 7.7 (m, 5H)

 ^{13}C NMR (δ_{PPM}) :

22(q)

68(d)

128(d)

129(d)

131(s)

135(d)

175(s)

A compound $\mathrm{C_4H_{10}O_2}$ shows the following NMR spectrum. Deduce its structure :

4. Solve the following:

(a) Using the Woodward-Fieser rules predict λ_{max} of the following compounds:

Or

Distinguish between the following pairs by using the indicated spectral method:

(b) Deduce the structure of the following compound using given spectral data and justify your answer:

Molecular formula: $C_8H_{10}O$

UV λ_{max} : 250, 260, 265

 $(\in 230, 270, 230)$

IR: 3360 (broad), 1610, 1550 cm⁻¹

PMR: 1.6δ (br s, 3.8 mm)

 $2.8 \delta(+J = 7 \text{ Hz}, 8 \text{ mm})$

 $3.9 \ \delta(+J = 7 \ Hz, \ 7.9 \ mm)$

7.2 $\delta(S, 20 \text{ mm})$.

Or

Assign the structure to the compound with MF $C_{11}H_{14}O_3$ which displays following data :

 $UV: 225 \text{ nm } (\in_{\text{max}} 9000)$

IR: 3200-2800 (broad), 1690, 1510, 830 cm⁻¹

 $PMR(\delta, PPM) \delta_{1.95} (m, 12 mm, J = 6 Hz)$

 $\delta_{2,22}$ (t, 12 mm, J = 6 Hz), $\delta_{3,2}$ (t, 12 mm, J = 6 Hz)

 $\delta_{3.78}$ (s, 18 mm), $\delta_{7.05}(d, 12 \text{ mm}, J = 8 \text{ Hz})$

 $\delta_{6.75}$ (d, 12 mm, J = 8 Hz).

 $\delta_{12.5}$ (s, 6 mm exchangeable with $D_2^{\circ}O$

Justify spectral data.

- 5. (A) Select the *correct* answer from the following Multiple Choice Questions and rewrite complete answer:
 - (i) Base peak in mass spectrum is obtained due to:
 - (a) less stable ion
 - (b) most stable ion
 - (c) meta stable ion
 - (d) none of the above.
 - (ii) In the NMR spectrum of a compound, one proton signal is seen at 12 δ , it must be due to:
 - (a) alcoholic —OH
 - (b) —COOH
 - (c) Phenol
 - (d) Aldehyde
 - (iii) Which one of the following is the correct basic value of λ_{max} for homoannular diene ?
 - (a) 214 nm
 - (b) 217 nm
 - (c) 253 nm
 - (d) 215 nm
 - (iv) Quadruple splitting observed in :
 - (a) K_3 [Fe(CN)₆]
 - (b) $K_2[Fe(CN)_5NO].2H_2O$
 - (c) Na_2 [Fe(CN)₅NO]
 - (d) All of the above

WT	(8	AT.	-12-	-201	١7
** I	(0	7.11		V 40 1	.

- (v) In IR spectrum, due to the presence of strong hydrogen bonding, the absorption band shifts to:
 - (a) higher wave number
 - (b) lower wave number
 - (c) Both the above
 - (d) no effect
- (B) Write short notes on any two:

10

- (a) Deshielding due to hydrogen bonding
- (b) Electronic effect on absorption frequency of carbonyl.
- (c) MacLafferty rearrangement.

AI-12-2017