This question paper contains 4 printed pages]

AI—83—2017

FACULTY OF SCIENCE

M.Sc. (Second Year) (Third Semester) EXAMINATION NOVEMBER/DECEMBER, 2017

(CBCS Pattern)

PHYSICAL CHEMISTRY

Paper (CH-532/3)

(Solid State Chemistry)

(Monday, 13-11-2017)

Time: 2.00 p.m. to 5.00 p.m.

Time— Three Hours

Maximum Marks—75

N.B. := (i) Attempt all questions.

- (ii) Use of log table and calculator is allowed.
- (iii) Solve MCQs in one attempt only.
- 1. Solve any three of the following:

15

- (a) Explain in brief coprecipitation as a precursor to solid state reaction.
- (b) Write a short note on colour centres.
- (c) Explain in brief ferromagnetism and antiferromagnetism.
- (d) Write a note on organic charge transfer complex.
- (e) Write a note on sintering.
- 2. Solve any three of the following:

15

- (a) Explain kinetics of solid state reaction.
- (b) If there are $10^{10}\,\mathrm{m}^2$ of edge dislocations in a simple cubic crystal, how much would each of these climbs down an average when the crystal P.T.O.

is heated from 0 to 1000K? The enthalpy of formation of vacancies is 1.03 eV atoms, the lattice parameter is 2Å. The volume of one mole of crystal is 5.5 cm³.

- (c) Explain in detail *p-n* junction.
- (d) Explain in detail new superconductors in organic solids.
- (e) An intrinsic semiconductor has a band gap of 1.5 eV. Calculate the wavelength of the EMR required to cause the material photoconducting.
- 3. (a) Explain in brief Magnetic Susceptibility. The length of the unit cell of iron (monoatomic bcc) is measured to be 286 pm using X-ray diffraction. What is the (radius) size of the iron atom?

Or

Explain Quantum Mechanical aspect of band theory.

(b) How can the reactivity in solids be improved?

7

Or

Explain in brief experimental procedure for solid state reactions.

4. (a) Explain optical properties of solids.

8

Or

Explain in brief Magnetic domain hysterisis.

(b) Explain thermodynamics of Schottky and Frenkel defects.

Derive :

$$n = [NNi]^{1/2} \exp [-E/_{kT}].$$

7

Or

Explain imperfection due to transient atomic displacement. Cesium bromide has CsCl structure (body centred cubic type of lattice). Its density is $4.49~{\rm g~cc^{-1}}$. Calculate the side of the unit cell.

5.	(a)	Select the <i>correct</i> alternative from the following:					
		(1)	Metal deficiency defect shows				Ş
			(a)	FeO	(b)	FeS	
			(c)	NiO	(d)	All of these	
		(2)	${ m TiO}_2$	shows structu	re.		
			(a)	Spinel	(b)	Ruttle	
		2010	(c)	Perovsterite	(d)	None of these	
	Š	(3)	An electron trapped at anion valency is known as				
		3000	(a)	F-centre	(b)	V_k centre	
کی			(c)	H centre	(d)	None of these	
		(4)	$ ext{If the}$	e current in the super	conductor	c exceeds a critical curre	nt,
	the superconducting is destroyed. It is					is known as	
		3673	(a)	Silsebee effect			
100°			(<i>b</i>)	Meissner effect			
	8 8 9 1 L		(c)	Sintering			
200 d		1 40°C		Name of the above			

WT (4) AI—83—2017

- (5) As temperature of a metal increases, conductance of the metal
 - (a) increases

- (b) decreases
- (c) No change
- (d) None of these
- (b) Write short notes on any two of the following:

10

- (i) Electrically conducting solids
- (ii) Meissner effect
- (iii) Edge dislocations.