This question paper contains 4 printed pages]

AG-153-2018

FACULTY OF SCIENCE

M.Sc. (Third Semester) EXAMINATION NOVEMBER/DECEMBER, 2018

(CBCS Pattern)

PHYSICAL CHEMISTRY

Paper XVII(533/3)

(Chemical Dynamics)

(Friday, 30-11-2018)

Time: 2.00 p.m. to 5.00 p.m.

Time—Three Hours

Maximum Marks—75

N.B. := (i) Attempt All questions.

- (ii) Use of log table and calculator is allowed.
- (iii) Solve Q. 5 (A), MCQ in one attempt only.
- 1. Solve any three:

15

- (a) Explain in brief surface rate of effusion.
- (b) Explain in brief kinetics of consecutive reaction.
- (c) Calculate A and rate constant for the reaction:

$$CH_3 + H_2 \longrightarrow CH_4 + H \text{ at } 200^{\circ}C$$

If the collision diameter is 3.0×10^{-10} m and it is assumed that activation energy is zero for the above reaction.

- (d) Write a note on autocatalysis.
- (e) What are main characteristics of Arrhenius equation?
- 2. Solve any three:

15

- (a) Write a note on ion interaction.
- (b) Explain in brief temp. dependence of Hit and trial method.

P.T.O.

7

7

- (c) If the activation energy of a reaction is 90.8 kJ/mol, calculate the fraction of molecules at 600°C which have enough energy to react to form products.
- (d) Show the variation of rate reaction with pressure and the three explosion limits.
- (e) Give an expression for collision theory of unimolecular reaction. How does the order vary with concentration of reacting molecule?
- (a) Derive:

$$\ln \frac{k_2}{k_1} = \frac{\mathbf{E}a}{\mathbf{R}} \left[\frac{1}{\mathbf{T}_1} - \frac{1}{\mathbf{T}_2} \right]$$

Or

Derive:

$$\ln \frac{x_{eq}}{x_{eq}-x} = k_f \frac{[A]_0}{x_{eq}} \cdot t.$$

(b) What do you meant by Oscillatory reaction? Explain Lotka Volterra mechanism of an oscillatory reaction.

Or

Calculate ΔH^* , ΔG^* and ΔS^* for the second order reaction :

$$2NO_{2(g)} {\longrightarrow} 3NO_{(g)} \text{+} O_{2(g)}$$

at 500 K [given : $A = 2 \times 10^9 \text{ sec}^{-1}$, Ea = 111 kJ/mol.]

4. (a) Derive Frying equation.

Or

Show that $t_{3/4} = (2^{n-1} + 1) t_{1/2}$, where n is order of reaction. Use this in the reaction of pyrolysis of CH_3 — CHO to determine 'n'.

So $t_{1/2} = 420$ sec. $t_{3/4} = 1220$ sec in a particular kinetics run.

WT					(3)		47 45 10 A	NG—153—2018
	(<i>b</i>)	Expl	ain ir	brief method	s used to dete	ermi	ne the rate lav	vs. 8
					Or			
		Expl	ain ir	n brief collision	n theory of re	actio	on rate.	
	(a)	Sele	elect the correct alternative from the following:					
		(i)	(i) The rate constant for the reaction depends upon each					
			following except:					
			(a)	Solvent for r	eaction			
			(<i>b</i>)	Temperature				
			(c)	Concentration	n of reactant			
			(d)	Nature of re	actant			
		(ii) For a reaction $A \rightarrow P$ a graph of [A] Vs time is found						found to be a
			straight line what is the order of reaction?					
		2	(a)	Zero		<i>b</i>)	First	
		25.55 25.55 25.55	(c)	Second		<i>d</i>)	Third	
	(iii) Which of the following does not aff						the rate of che	mical reaction?
			(a)	Enhalpy				
			(b)	Temperature				
			(c)	Surface area	2. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.			
		(d) Concentration of reactant						
		(iv)	Arsenic oxide acts in the contact process as:					
			(a)	Catalyst	(b)	Promotor	
	000		(c)	Poison	(d)	Enzyme	
	1,00	0155		30				РΤО

WT (4) AG-153-2018

- (a) Inversion of cane sugar
- (b) Keto enol tautomerism
- (c) Decomposition of Nitramine
- (d) All of the above

(b) Write short notes on (any two):

- (i) Diffusion probalities
- (ii) Chemical chaos
- (iii) Explosion.