This question paper contains 4 printed pages]

## AG-244-2018

## FACULTY OF SCIENCE

## M.Sc. (Second Year) (Third Semester) EXAMINATION NOVEMBER/DECEMBER, 2018

(CBCS Pattern)

## ANALYTICAL CHEMISTRY

(CH-534/4)

(Instrumental Methods of Chemical Analysis-I)

(Monday, 3-12-2018)

Time: 2.00 p.m. to 5.00 p.m.

Time—3 Hours

Maximum Marks—75

N.B. := (i) Attempt All questions.

- (ii) Figures to the right indicate full marks.
- (iii) Use of logarithmic table and calculator is allowed.
- (iv) Multiple Choice Questions (MCQs) should be attempted only once on page No. 3 of answer-book with complete answer.
- 1. Attempt any three of the following:

15

- (a) Describe molecular electronic levels.
- (b) Explain principle and working of Abbe's refractometer with its diagram.
- (c) Describe circular dichroism theory.
- (d) Explain working of Thermogravimetry with its neat labelled diagram.
- (e) Explain in detail atomic emission spectra.
- 2. Attempt any three of the following:

15

- (a) Distinguish between atomic absorption spectra and atomic fluorescence spectra.
- (b) Calculate the energy in Joules per quantum, calories per mole at wavelength 2800 Å.

(Given : C = 3 × 10<sup>8</sup>m/sec, N = 6.02 × 10<sup>-23</sup> mole<sup>-1</sup>,  $h = 6.62 \times 10^{-34}$  s/sec.)

P.T.O.

- (c) Explain electrothermal automizers with its block diagram.
- (d) Discuss the applications of DTA in detail.
- (e) A sample of 1-alanine with specific rotation are 40.27 Å and 65.27 Å and angle of rotation 16.23 and 32.16 and length of tube is 15 cm. Calculate the concentration.
- 3. Answer any one from (a) and one from (b):
  - (a) Describe applications of thermometric titrations.

Or

Calculate the frequency of radiation whose wavelength is 700 and 1500 Å. Express this wavelength in wave number.

7

(Given :  $C = 3 \times 10^{10}$  cm/sec)

(b) Explain principle and working of Differential Thermal Analysis (DTA) with its schematic diagram.

Or

Calculate the energy in Joules per quantum, calories per mole at wavelength 2800 Å and 3500 Å.

(Given : C =  $3 \times 10^8$  m/sec, N =  $6.02 \times 10^{-23}$ , mol<sup>-1</sup>,  $h = 6.62 \times 10^{-34}$  s/sec)

- 4. Answer any one from (a) and one from (b):
  - (a) Convert the following absorbance values into % transmission: 8
    - (i) 1.25
    - (ii) 1.09
    - (iii) 1.78
    - (iv) 1.5

Or

Give the applications of nephelometry and turbidimetry.

(b) Explain spectral interference and chemical interference in detail. 7

Or

The refractive index of benzene is found to be 1.642 if the density is 1.712, calculate molar refraction. (molecular weight = 78).

5. (A) Choose the correct choice:

**5** 

- (1) The light scattered in nephelometry is ......
  - (a) elastic
  - (b) non-elastic
  - (c) both (a) and (b)
  - (d) none of the above
- (2) AAS can be used to determine concentration as low as ...........
  - (a) 10—20 ppm
  - (*b*) 10 ppm
  - (c) 1 ppm
  - (d) any amount
- (3) The anlge of rotation depends upon .........
  - (a) conc.
  - (b) wavelength
  - (c) temperature
  - (d) all of the above
- (4) Snell's law is .....
  - (a)  $\sin i \times r = n$
  - $(b) \qquad \frac{\sin i}{\sin r} = \infty$
  - $(c) \qquad \frac{\sin i}{\sin r} = n$
  - $(d) \qquad \frac{\sin r}{\sin i} = n$

P.T.O.

WT (4) AG—244—2018

(5) ..... is used for accurate and good result.

- (a) ASC
- (b) DSC
- (c) TG
- (d) DT

(B) Write short notes on any two:

10

- (a) Flame atomization
- (b) Snell's law
- (c) Optical rotation.

AG-244-2018