This question paper contains 7 printed pages]

## L-12-2019

## FACULTY OF SCIENCE

## M.Sc. (Third Semester) EXAMINATION MARCH/APRIL, 2019 (CBCS Pattern)

CHEMISTRY

Paper (CH-531)

(Advanced Spectroscopic Methods)

(Monday, 22-4-2019)

Time: 2.00 p.m. to 5.00 p.m.

Time—3 Hours

Maximum Marks—75

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) Multiple Choice Questions (MCQ) should be attempted only once on page number three of answer-book with complete answer.
- 1. Attempt any three of the following:

15

- (a) The  $\searrow_{C=O}$  stretching frequency in p-nitroacetophenone is higher than in p-methoxy acetophenone.
- (b) Use of deuterium exchange and deuterium labelling in PMR specroscopy.
- (c) In case of carbonyl compounds, the  $\pi \to \pi^*$  transition undergoes barthochromic shift in high polar solvent but  $n \to \pi^*$  transition undergoes hypsochromic shift under same condition.
- (d) An organic compound with M.F.C $_5$ H $_{11}$ O displays the following CMR spectral data :

$$\delta: 18(q), 27.3(q), 42(d), 21.1(s)$$

Assign structure to the compound.

- (e) Calculate the fundamental modes of vibrations in the following:
  - (i)  $N_2O$
  - (ii) BCl<sub>4</sub>

P.T.O.

- 2. Attempt any *three* of the following:
  - (a) Partial hydrogenation of the triene shows below results in two compounds D and E, both of the molecular formula  $C_{10}H_{14}$ . The compound 'D' shows  $\lambda_{max} = 235$  nm and 'E' = 275 nm. Assign the structure :

15

$$\underbrace{\frac{\text{Partial}}{\text{Hydrogenation}}} D + E$$

(b) Dimethyl glyoxime is a bidented ligand it form more stable complex with metal Nickel (II) ion. What will be the force constant for the Ni-N bond in Nickel with dimethyl glyoxime complex?

 ${\bf Given}:$  Fundamental vibrational frequency of  ${\rm Ni(DMG)_2}$  complex is  $550~{\rm cm^{-1}}:$ 

At. weight of Ni = 58.71

At. weight of N = 14

Avogadro number =  $6.02 \times 10^{23}$ .

(c) How will you follow the following sequence of reaction by using IR:

$$\begin{array}{c}
 & \xrightarrow{\text{H}_2\text{O}} ? \\
\hline
 & \xrightarrow{\text{CrO}_3} \\
\end{array}$$

- (d) What do you understand by metastable ion? Explain the importance of the ions in mass spectroscopy.
- (e) Deduce the structure of a compound using NMR spectral data:

M.F = 
$$C_8H_7OC1$$
  
 $\delta$  : 4.25 (s, 6 mm)  
7.4 - 7.9 (m, 15 mm)

- 3. Solve the following:
  - (a) Deduce the structure of compound based on the following data: 8

 $Molecular\ formula\ :\ C_{10}H_{15}N$ 

 $IR(cm^{-1})$ : 3350 (broad), 1600

MS(m/z): 149, 134, 91 (base peak)

 $PMR(\delta) : 1.1 (6H, d, J = 7 Hz)$ 

1.5 (1H, bs, exchange with  $D_2O$ )

2.75(1H, septet, J = 7 Hz)

3.7(2H, s), 7.25 (5H, s)

Or

An organic compound with molecular formula  $C_{10}H_{11}NO_2$  shows the following spectral data. Assign the structure and justify the spectral data :

PMR: δ 3.6 (s, 8 mm), 3.8(s, 24 mm) 6.4(m, 12 mm)

CMR:  $\delta 162(s)$ , 131(s), 118(s), 108(d), 100(d), 58(q), 22(t).

(b) Explain the genesis of ions of the following:

$$\begin{array}{c} \text{O} \\ \parallel \\ \text{C}-\text{CH}_2-\text{CH}-\text{C}-\text{OC}_2\text{H}_5 \\ \mid \\ \text{NH}_2 \end{array}$$

m/z : 30, 31, 58, 74, 102.

P.T.O.

7

$$(ii) \qquad \begin{array}{c} \operatorname{CH}_3 \\ \\ \operatorname{CH}_3 \\ \end{array}$$

m/z: 77, 79, 105, 106, 135, 130.

Or

How will you follow the course of the following reaction by IR?

15

## 4. Solve the following:

(a) An organic compound with the following spectral data:

$$C = 36.9\%, H = 5.67\%, Br = 41.0\%$$

 $IR = 1735, 1250 \text{ cm}^{-1}.$ 

 $^{1}$ H NMR : 4.1 (2H, q, J = 7.5 Hz)

$$3.8(2H, t, J = 7 Hz)$$

1.8(2H, M), 1.25(3H, t, J = 7.5 Hz)

$$2.4(2H, t, J = 7.2 Hz)$$

Mass (m/z): 194  $(M^+)$ , 196  $(m^{+z})$ 

Deduce structure.

Distinguish between the following pairs by using indicated spectral method:

$$(iii)$$
 O O O CMR

$$(iv) \begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0$$

(b) Calculate  $\lambda_{max}$  for the following compound by A.I. Scott rules :

P.T.O.

Or

A compound having M.F  $C_8H_9OBr$  shows the following NMR spectrum. Deduce its structure :



- 5. (A) Select the *correct* answer from the following multiple choice questions and rewrite the complete answer:
  - (i) Diene or conjugated polyene in UV spectrum displays:
    - (a) R-Band
- (b) K-Band
- (c) B-Band
- (d) E-Band
- (ii) How many fundamental vibrations are epected with  ${\rm CO}_2$  ?
  - (a) one

(b) two

(c) three

- (d) five
- (iii) Which one is the correct basic value of  $\lambda_{max}$  for homoannular diene ?
  - (a) 214 nm
- (b) 253 nm
- (c) 217 nm
- (d) 215 nm
- (iv) Gyromagnetic ratio in  $^{13}$ CNMR spectroscopy is :
  - (a) 26753 radian guess  $S^{-1}$
  - (b) 6728 radian guess S<sup>-1</sup>
  - (c) 9850 radian guess  $S^{-1}$
  - (d) 4980 radian guess S<sup>-1</sup>

| WT ( | 7 | \$ 55 | L-12-2019 |
|------|---|-------|-----------|
|      |   |       |           |

- (v) The presence of chlorine and bromine can be easily detected by:
  - (a) UV

(b) CMR

(c) IR

- (d) Mass
- (B) Write short notes on (any two):

10

- (a) Spin-spin coupling in PMR.
- (b) Stretching and bending vibrations in IR.
- (c) MacLafferty rearrangement.