This question paper contains 3 printed pages]

AI—44—2017

FACULTY OF SCIENCE

M.Sc. (Second Year) (Fourth Semester) EXAMINATION OCTOBER/NOVEMBER, 2017

(Revised Course)

INORGANIC CHEMISTRY

Paper XVII, [CH-541/1]

(Organometallic Catalysis and Fluxanality)

(Saturday, 11-11-2017)

Time: 2.00 p.m. to 5.00 p.m.

Time—3 Hours

Maximum Marks—75

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Solve any *three* out of five :

15

- (a) Describe the process of ammonia synthesis.
- (b) Write chemistry of Wilkinson's catalyst.
- (c) Explain the chemistry of LiAlH₂ and its commercial applications.
- (d) Comment on use of organometallic compounds of Ru(II) as catalyst.
- (e) Discuss the fluxionality of cyclopentadienyl complexes.
- 2. Solve any three out of five:

15

- (a) Discuss the physic-chemical principle of SO₂ oxidation.
- (b) How surface area and temperature is related to rate of catalytic reaction?
- (c) Describe the method to detect stereochemical non-rigidity.
- (d) Explain the term hydrosilation reaction with suitable example.
- (e) Discuss the chemistry of sodium borohydride.

P.T.O.

WT		(2) AI—44—2017
3.	Ansv	wer the following:
	(A)	Distinguish between Chemisorption and desorption.
		Discuss the salient features of Fischer Tropsch synthesis.
	(B)	Write method of preparing zeolite and commercial applications. 7
		Discuss the mechanism of Birch Clemmenson reaction.
4.	Ansv	wer the following:
	(A)	Discuss the mechanism of polymerization of alkene using catalyst. 8
		What are the different catalytic steps involved in hydrogenation?
	(B)	Classify different types of zeolites with examples. 7
		Explain the term hydroformylation with suitable examples.
	(A)	Choose the <i>correct</i> option from the given alternatives: 5
	ي	(i) In most heterogeneous catalytic systems the catalyst is in
	20/01	
		(a) Gaseous phase
		(b) Solid phase
	3 3 3 4	(c) Liquid phase
	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(d) Emulsion phase
	20,00 OL	(ii) molecules of trigonal pyramidal geometry exhibit
	12 40 C	a low energy fluxional behaviour called Berry pseudorotation.
	0 10 C	$(a) PF_3$
	555	$(b) \text{Fe}_2(\text{CO})_9$
		(c) $\operatorname{Co}_2(\operatorname{CO})_8$
600	600	(d) Fe(CO) $_5$

(3) AI—44—2015
Selectivity of Zeolite catalysts can be increased by changing
the:
(a) Si/Al ratio
(b) Concentration of Si atom
(c) Increasing the Si atom
(d) Increasing the Al and Si atom
In Berry pseudorotation molecules with trigona
pyramidal geometry exhibit low energy fluxional behaviour.
(a) $\operatorname{Co}_2(\operatorname{CO})_8$
(b) $Mo(Cp)_2$
(c) $\operatorname{Fe(CO)}_{\overline{5}}$
(d) $\operatorname{Mn}_2(\operatorname{CO})_{10}$
In the case of the Suzuki coupling, the ligands are transferred
from the organoboron species to the complex
(a) Divalent Pd
(b) Trivalent Pd
(c) Monovalent Pd
(d) Mix valent Pd
brief notes on (any two):

(i) Epoxidation

(ii) Surface migration in catalytic reaction

(iii) Fluxionality in triogonal bipyramidal complex.