This question paper contains 3 printed pages]

significance.

AG-114-2018

FACULTY OF SCIENCE

M.Sc. (Second Year) (Fourth Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

(CBCS Pattern)

INORGANIC CHEMISTRY

(Photo Inorganic Chemistry)

		Paper XVIII [CH-542/1]		
(Thu	ırsday	y, 29-11-2018) Time : 2.00 p.m. to 5.00 p.	Time: 2.00 p.m. to 5.00 p.m.	
Time	e—3 H	Iours Maximum Marks—	75	
N.B.	<i>:</i> —	All questions are compulsory.		
1.	Answ	ver any three out of five:	15	
	(<i>a</i>)	Describe the conditions for excited state of ML_6 complexes.		
	(<i>b</i>)	Discuss the importance of solar energy ratio.		
	(c)	Explain the features of Frank Codon principle.		
	(d)	How energy is dissipated during non-radiative process?		
	(e)	Write salient features of Grotthuss-Draper law.		
2.	Answ	ver any three out of five:	15	
A PAR	(a)	Draw and explain Jablonski diagram of energy.		
	(b)	Explain the relaxation process involved in excited ion.		
	(c)	Explain with examples the mechanism of delayed reactions.		
	(<i>d</i>)	Give examples of Photo-physical processes.		
	(e)	Comment on coordination of Cr(III) complexes.		
3.	Answer the following:			
00 12 10	(a)	Discuss the origin of charge transfer spectra and discuss	its	

8

P.T.O.

Second law of photochemistry

First law of photochemistry

Third law of potochemistry

Law of photolysis

(a)

(b)

(c)

(d)

WT	(3)	AG-114-2018
		4,4% XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

- (3) A charge-transfer complex is an association of two or more molecules in which a fraction of electronic charge is transferred between the
 - (a) Atomic entities
 - (b) Ionic entities
 - (c) Molecular entities
 - (d) Compound
- (4) Molecules that exhibit only small spin-orbit coupling type of non-radiative transition can give rise to
 - (a) Phosphorescence
 - (b) Fluorescence
 - (c) Chemiluminescene
 - (d) Photoluminescene
- (5) Some photochemical reactions are faster than thermal reactions by magnitude of :
 - (a) 10^{-1} seconds
 - (b) 10⁻⁴ seconds
 - (c) 10⁻⁶ seconds
 - (d) 10⁻⁹ seconds
- (b) Write brief notes on (any two):

10

- (a) Photo rearrangement reaction
- (b) Absorption spectra of $[Cu(OH_2)_6]$ complexes
- (c) Quantum yield.

AG-114-2018