This question paper contains 3 printed pages]

AG-284-2018

FACULTY OF SCIENCE

M.Sc. (Second Year) (Fourth Semester) EXAMINATION NOVEMBER/DECEMBER, 2018

(Revised Course)

CHEMISTRY

Paper XXIII (CH-544/1)

(Nuclear and Radiochemistry)

(Tuesday, 4-12-2018)

Time: 2.00 p.m. to 5.00 p.m.

Time—3 Hours

Maximum Marks—75

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Answer any *three* out of five :

15

- (a) What are the characteristics of α radiation?
- (b) Explain the application of Radiation Dosimetry.
- (c) Draw layout of nuclear reactor for power generation.
- (d) Discuss the principle of electron capture reaction with suitable example.
- (e) What is symmetric fission? Give example.
- 2. Answer any three out of five:

15

- (a) How are nuclear reactions controlled?
- (b) Describe the characteristics of β particle.
- (c) Describe the penetrating power γ radiation.
- (d) What is Hydrated electron? Explain with example.
- (e) Discuss the energetics of nuclear fusion.

P.T.O.

WT		(2) AG $-284-2$	2018								
3.	Answer the following:										
	(A)	Discuss the theory of γ decays.	8								
		Or	999								
		What are the different important features of nuclear fusion react	or?								
	(B)	Compare the characteristics of α rays with γ rays.									
	Explain Radiolysis of water with respect to energy and products obtain										
4.	Ansv	Answer the following:									
	(A)	Describe the working of Natural uranium reactor.									
		Discuss the chemical affects of nuclear reaction.									
	(B)	Enlist various characteristics of liquid drop model.	7								
	Or CORCE										
		Enlist features of Enriched aqueous homogeneous reactors.									
5.	(A)	Choose the <i>correct</i> option from the given alternatives :									
		(i) The nuclear Coulomb energy with the incr	ease								
	360	in average distance between the Nuclear protons.									
		(a) decreases									
	20 20 20 20 20 20,	(b) increases									
		(c) unaffected									
		(d) becomes zero									
		(ii) The is define as a ratio of Coulomb energ charged sphere to surface area of the sphere.	y on								
	C C C C C C C C C C C C C C C C C C C	(a) Nucleus parameter									
		(b) Decay parameter									
		(c) Fusion parameter									
		(d) Fissionability parameter									
· · ·	1 LOV 0 1 W	() 4 kg () 3 3 3 1 kg									

WT				(3)			AG—2	284—	2018
	(iii)	With longer	time	scale,	the	neutron	rich	fragments	emit	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2

- (a) γ-particle
 - (b) β -particles
 - (c) α -particles
 - (d) Meson particles
- (iv) The spontaneous fission half-lives change by a factor of 10^{29} in going from the longest lived U nuclei to the short-lived isotopes of:
 - (a) Thorium
 - (b) Neptunium
 - (c) Fermium
 - (d) Americium
- (v) Uranium-238 decays to form Th²³⁴ by:
 - (a) α decay
 - (b) β decay
 - (c) Electron capture
 - (d) Positron decay
- (B) Write brief notes on (any two):
 - (a) Optical model
 - (b) Dirac's theory of positron
 - (c) Relation between mass and energy.