This question paper contains 3 printed pages]

SF-49-2022

FACULTY OF COMPUTER STUDIES

B.Sc. (First Year) (First Semester) **EXAMINATION**

MAY/JUNE, 2022

(CBCS/Revised Pattern)

COMPUTER SCIENCE

(Fundamentals of Digital Electronics)

(Wednesday, 6-7-2022)

Time: 9.30 a.m. to 1.15 p.m.

Time— 3.45 Hours

Maximum Marks—75

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
 - (iii) Assume suitable data, if required.
- 1. Attempt any *five* of the following:

15

- (a) Explain Gray code in detail.
- (b) Explain basic gates (AND, OR, NOT).
- (c) Explain half adder.
- (d) Explain D-Type flip-flop.
- (e) Explain 4:1 multiplexer.
- (f) Explain 1's complement with example.
- (g) Explain full adder.

P.T.O.

WT		(2)	SF—49—2022
2.	Attempt any three of the following:		
	(a)	State and prove De-Morgan's any one theorem.	
	(b)	Explain X-OR and X-NOR gates.	
	(c)	Explain Encoder (Decimal to BCD).	
	(d)	Draw logic diagram of the following:	
		$\gamma = AB + CD$	
	(e)	Why NAND gate is known as universal gate?	
3.	Attempt any three of the following:		15
	(a)	Convert the following:	
		(i) $(27)_{10} = ()_2$	5.4
		(ii) $(245)_8 = ()_{10}$	
	(<i>b</i>)	Solve the following:	
		(i) $(1010 + 0110)$	
		(ii) $(1110 - 0101)$	
	(c)	Explain 2's complement with example.	
	(d)	Explain SR flip-flop.	
	(e)	Explain SISO shift register.	
4.	Attempt any three of the following:		15
	(a)	Subtract using 1's complement (1011 - 0010).	
	~ 40° 00'	1 2 1 8 C C 1 3 7 7 40 8 6 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	

Minimize the following using k-map $f(A, B, C) = \sum m, (0, 1, 4, 6)$

Explain 1: 4 demultiplexer.

Explain parity code.

Explain BCD to Decimal decoder.

(b)

(c)

(*d*)

(e)

WT (3) SF-49-2022

5. Write short notes on any three:

15

- (a) Analog to digital converter
- (b) Shift Register
- (c) Asynchronous counter
- (d) K-map
- (e) Parity bit.

SF-49-2022

3