This question paper contains 2 printed pages]

RB—123—2022

FACULTY OF HUMANITIES

B.A. (First Year) (First Semester) EXAMINATION MAY/JUNE, 2022

MATHEMATICS

Paper-II

(Algebra and Trigonometry)

(Thursday, 23-6-2022)

Time: 10.00 a.m. to 12.30 p.m.

Time— 2½ Hours

Maximum Marks—50

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to right indicate full marks.
- 1. (A) Prove that matrix multiplication is associative, *i.e.*, if A, B and C are matrices of orders $m \times n$, $n \times p$ and $p \times q$, respectively, then prove that:

$$A(BC) = (AB)C$$

Or

(B) Find the inverse of matrix:

10

$$A = \begin{bmatrix} 9 & 5 & 6 \\ 7 & -1 & 8 \\ 3 & 4 & 2 \end{bmatrix}$$

2. (A) Prove that the elementary operations do not alter the rank of a matrix. 10

Or

(B) Reduce to row echelon form the matrix.

10

$$A = \begin{bmatrix} 1 & -2 & -1 & 4 \\ 2 & -4 & 3 & 5 \\ -1 & 2 & 6 & -7 \end{bmatrix}$$

and also find the rank of A.

P.T.O.

3. (A) Prove that a system AX = B of m linear equations in n unknowns is consistent if, and only if, the coefficient matrix A and the augmented matrix A : B of the system have the same rank.

Or

(B) Solve the system of equations:

10

$$x_1 + 2x_2 + 2x_3 = 1$$

$$2x_1 + x_2 + x_3 = 2$$

$$3x_1 + 2x_2 + 2x_3 = 3$$

$$x_2 + x_3 = 0$$

4. (A) State and prove De Moivre's Theorem.

10

Or

(B) Prove that:

10

$$\cos n \theta = \cos^n \theta - \frac{n(n-1)}{1.2} \cos^{n-2} \theta \sin^2 \theta$$

$$+ \frac{n(n-1)(n-2)(n-3)}{1.2.3.4} \cos^{n-4}\theta \sin^4\theta + \dots$$

5. Answer any *two* of the following:

10

- (A) Define an orthogonal matrix and prove that the determinant of an orthogonal matrix is ± 1 .
- (B) State any *five* elementary operations for matrices with notations for these operations.
- (C) Find the characteristic roots of the matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7 \end{bmatrix}$$

(D) Prove that, for all values of x and y, real or complex,

 $\sin(x+y) = \sin x \cos y + \cos x \sin y.$

RB-123-2022

2