This question paper contains 3 printed pages]

RA-90-2022

FACULTY OF ARTS

B.A. (Third Year) (Sixth Semester) EXAMINATION

JUNE/JULY, 2022

(New Course)

MATHEMATICS

Paper XV

(Complex Analysis)

(Tuesday, 7-6-2022)

Time: 10.00 a.m. to 12.30 p.m.

Time—2½ Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Suppose that f(z) = u(x, y) + i v(x, y) and that f'(z) exists at a point $z_0 = x_0 + iy$. Then show that the first order partial derivatives of u and v must exist at (x_0, y_0) , and they must satisfy the Cauchy-Riemann equations $u_x = v_y$, $u_y = -v_x$ there. Also, prove that $f'(z_0)$ can be written $f'(z_0) = u_x + iv_x$ where these partial derivatives are to be evaluated at (x_0, y_0) .

Or

(a) If a function f is analytic throughout a simply connected domain D, then prove that $\int_C f(z) dz = 0$ for every closed contour C lying in D. 8

P.T.O.

- (b) If $f(z) = \frac{z}{\overline{z}}$, then show that the limit $\lim_{z \to 0} f(z)$ does not exist.
- 2. Suppose that a function f(z) is continuous on a domain D. If any one of the following statements is true then prove that others are true: 15
 - (i) f(z) has an antiderivatives F(z) in D.
 - (ii) The integral of f(z) along contours lying entirely in D and extending from any fixed point z_1 to any fixed point z_2 all have the same value.
 - (iii) The integrals of f(z) around closed contours lying entirely in D all have value zero.

Or

- (a) Describe the method to find roots of complex numbers. Also find the values of $(-8i)^{1/3}$.
- (b) (Fundamental Theorem of Algebra) Prove that any polynomial

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n \ (a_n \neq 0)$$

of degree n $(n \ge 1)$ has at least one zero.

- 3. Attempt any two of the following: 5 marks each
 - (a) If a function f(z) is continuous and non-zero at a point z_0 , then prove that $f(z) \neq 0$ throughout some neighborhood of that point.

7

(b) Find the harmonic conjugate v(x, y) of a function:

$$u(x, y) = y^3 - 3x^2y.$$

(c) If C be the arc of the circle |z| = 2 from z = 2 to z = 2i, then show that:

$$\left|\int_{\mathcal{C}} \left| \frac{z+4}{z^3-1} dz \right| \leq \frac{6\pi}{7}.$$

(d) Show that $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ whenever |z| < 1.