This question paper contains 3 printed pages]

RA-200-2022

FACULTY OF ARTS

B.A. (Third Year) (Fifth Semester) EXAMINATION

MAY/JUNE, 2022

(New Course)

MATHEMATICS

Paper XIII (DSE-IB)

(Linear Algebra)

(Monday, 13-6-2022)

Time: 10.00 a.m. to 12.30 p.m.

Time— 2½ Hours

Maximum Marks—50

N.B. := (i) Attempt All questions.

- (ii) All questions carry equal marks.
- 1. Define direct sum:

10

Let U and W be two subspaces of a vector space V and Z = U + W. Then prove that $Z = U \oplus W$ if and only if the following condition is satisfied. Any vector $z \in Z$ can be expressed uniquely as the sum

$$z = u + w, u \in U, w \in W$$

Or

Give the definition of basis for a vector space V, and prove that in a vector space V if $\{v_1, v_2,v_n\}$ generates V an if $\{w_1, w_2,, w_n\}$ is linearly independent then $m \leq n$.

P.T.O.

2. If U and W are two subspaces of a finite dimensional vector space V, then show that:

$$\dim(U + W) = \dim U + \dim W - \dim(U \cap W)$$

Or

Let $T: U \to V$ be linear map. Then show that :

- (a) R(T) is a subspace of V.
- (b) N(T) is a subspace of V.
- (c) T is one-one iff N(T) is the zero subspace $\{O_{ij}\}$ of U.
- $(d) \qquad \text{If } [u_1,\ u_2\ \dots\ u_n] \ = \ \text{U}, \text{ then } \ \text{R}(\text{T}) \ = \ [\text{T}(u_1),\ \text{T}\ (u_2),\ \dots\dots\ \text{T}\ (u_n)]$
- (e) If U is finite dimensional then

 $\dim R(T) \leq \dim U.$

3. State and prove Rank-Nullity Theorem.

10

Or

Let $T:\,U\,\rightarrow\,V$ be a non-singular linear map. Then prove that :

 $T^{-1}: V \to U$ is a linear one-one and onto map.

4. The dimension of the vector space $M_{m,n}$ is m.n.

10

Or

Let A be a square matrix of order n having k distinct eigen values λ_1 , λ_2 ..., λ_k . Let v_i be an eigen vector corresponding to the eigen values λ_i , i=1, 2, ..., k. Then show that the set $\{v_1, v_2 \dots v_k\}$ is linearly independent.

5. Attempt any two of the following:

5 each

(a) Check the linear dependence or linear independence of the set $\{x, |x|\}$ is G(-1, 1).

(b) Check whether the following map is linear or not.

T : $V_3 \rightarrow V_2$ defined by $T(x_1, x_2, x_3) = (x_1 - x_2, x_1 + x_3)$

- (c) Consider the mapping $T: P_2 \to V_3$ defined by $T(\alpha_0 + \alpha_1 x + \alpha_2 x^2)$ = $(\alpha_0, \alpha_1, \alpha_2)$, check T is a linear map and check when T^{-1} exists or not
- (d) Determine the matrix associated with a linear map:

 $T: V_3 \rightarrow V_3$ defined by

 $T(x_1, x_2, x_3) = (x_1 - x_2 + x_3, 2x_2 + 3x_2 - \frac{1}{2}x_3, x_1 + x_2 - 2x_3)$ related to the bases.

 $B_1 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$

 $B_2 = \{(1,\ 1,\ 0),\ (1,\ 2,\ 3),\ (-1,\ 0,\ 1)\}$