## **SUBJECT CODE NO:- SB-69** FACULTY OF SCIENCE B. Sc (Third year ) (Sem-VI) Examination JUNE/JULY 2022 **Mathematics**

**Integral Transforms-XVI** 

[Time: 2:00 Hours]

[Max. Marks: 40]

Please check whether you have got the right question paper.

N.B

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- transform of t. sinhat

If L[f(t)] = F(s) then prove that  $L[t^n, f(t)] = (-1)^n \cdot \frac{d^n}{ds^n} [F(s)]$  and hence find the Laplace

OR

a. Find the value of

$$L^{-1}\left\{\frac{1}{(s^2+a^2)^2}\right\}$$

07

08

- b. Find the inverse Laplace transform of  $\frac{1}{s(s+a)}$

Prove that the Fourier integral for  $f(x) = \frac{1}{\pi} \int_0^{\infty} \int_{-\infty}^{\infty} f(t) \cdot \cos u(t-x) dt du$ 

15

08

a) Using Laplace transforms find the solution of the initial value problem.

 $y'' - 4y' + 4y = 64\sin 2t$ y(0) = 0, y'(0) = 1

07

b) Using Laplace transforms find the solution of the initial value problem

$$y'' + 25y = 10 \cos 5t$$
  
 $y(0) = 2$   $y'(0) = 0$ 

Attempt any two of the following:

10

- a) Prove that  $L(e^{at}) = \frac{1}{s-a}$  where s >a.
- b) Find the inverse Laplace transform of  $\frac{8}{s^2-16}$
- c) Prove that

 $f(x) = \frac{2}{\pi} \int_0^\infty sinux du$ .  $\int_0^\infty f(t)$ . sinut dt is the Fourier sine integral for f(x)

d) Solve  $\frac{dx}{dt} + y = 0$  and  $\frac{dy}{dt} - x = 0$  under the condition. x(0) = 1, y(0) = 0.