This question paper contains 3 printed pages]

SB-114-2022

FACULTY OF SCIENCE

B.Sc. (Second Year) (Fourth Semester) **EXAMINATION**

MAY/JUNE, 2022

(Old Course)

MATHEMATICS

Paper IX

(Real Analysis-II)

(Friday, 17-06-2022)

Time: 2.00 p.m. to 4.30 p.m.

Time— 2½ Hours

Maximum Marks—40

N.B. := (i) Attempt All questions.

- (ii) Figures to the right indicate full marks.
- 1. Prove that:

15

- (i) If a bounded function f is integrable on [a, b], then it is also integrable on [a, c] and [c, b] where c is a point of [a, b].
- (ii) Conversely if f is bounded and integrable on [a, c], [c, b] then it is also integrable on [a, b].
- (iii) In either case:

$$\int_{a}^{b} f \, dx = \int_{a}^{c} f \, dx + \int_{c}^{b} f \, dx, \, a \le c \le b.$$

(a) Show that if f is bounded function on [a, b], then to every $\epsilon > 0$ there corresponds $\delta > 0$ such that:

P.T.O.

- (i) $U(p, f) < \int_a^{\overline{b}} f \, dx + \epsilon$
- $(ii) \qquad \mathrm{L}(p,\,f) \,>\, \int_a^b f \;dx \,-\, \in$

for every partition P of [a, b] with norm $\mu(p) > \in$.

- (b) Prove that; A necessary and sufficient condition for the integrability of a bounded function f is that to every $\epsilon > 0$, ther e corresponds $\delta > o$ such that for every partition p of [a, b] with norm $\mu(p) < \delta$, $U(p, f) L(p, f) < \epsilon$.
- 2. Prove that if a function f is bounded and integrable on [a, b], then the function F defined as $F(x) = \int_a^x f(t) \, dt$, $a \le x \le b$ is continuous on [a, b] and furthermore, if f is continuous at a point c of [a, b] then, F is derivable at c and F'(c) = f(c).

Or

- (a) If f and g be two positive functions such that $f(x) \le g(x)$ for all x in [a, b] prove that :
 - (i) $\int_a^b f \, dx$ converges, if $\int_a^b g dx$ converges and
 - (ii) $\int_a^b g dx$ diverges if $\int_a^b f dx$ diverges.
- (b) Prove that improper integral $\int_a^b f dx$ converges at a if and only if to every $\epsilon > 0$ there corresponds $\delta > 0$ such that : $\left| \int_{a+\lambda_1}^{a+\lambda_2} f dx \right| < \epsilon, \ 0 < \lambda_1, \ \lambda_2 < \delta$

3. Attempt any two of the following:

10

- (a) For a periodic function of period 2π . prove that :
 - (i) $\int_{\alpha}^{\beta} f dx = \int_{\alpha+2\pi}^{\beta+2\pi} f dx$
 - (ii) $\int_{-\pi}^{\pi} f dx = \int_{\alpha}^{\alpha + 2\Pi} f dx$

where α , β being any numbers.

(b) Show that for a bounded integral function ϕ :

$$\lim_{x \to 0} \int_0^a \frac{\sin nx}{\sin x} dx = \lim_{x \to 0} \int_0^a \frac{\sin nx}{x} dx$$

$$0 < a < \pi$$

(c) If f is a periodic function with period 2Π defined as:

$$f(x) = \begin{cases} -1 & \text{for } -\pi < x < 0 \\ 1 & \text{for } 0 \le x \le \pi \end{cases}.$$

Expland in a series of sines and cosines of multiple angles of x.

(d) Find the Fourier series generated by the periodic function |x| of period 2π .