This question paper contains 2 printed pages]

SB-155-2022

FACULTY OF SCIENCE

B.A./B.Sc. (Second Year) (Fourth Semester) EXAMINATION MAY/JUNE, 2022

(Old Pattern)

MATHEMATICS

Paper-IX

(Partial Differential Equations)

(Wednesday, 22-6-2022)

Time: 2.00 p.m. to 4.30 p.m.

Time— 2½ Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- 1. Discuss the method to solve Lagrange's linear equations of the type $Pp \ Qq = R$, where P, Q, R are functions of x, y, z and $P = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$.

From the partial differential equation:

$$z = f(x^2 + y^2). 15$$

0r

(a) Solve:

$$\frac{\partial^3 z}{\partial x^3} = \cos(2x + 3y)$$

(b) Explain the method to solve the equation of type f(z, p, q) = 0 equations not containing x and y.

P.T.O.

2. Explain the Charpit's method to solve partial differential equation with two independent variables f(x, y, z, p, q) = 0.

Or

(a) Explain Monge's method to solve the non-linear equation of second order:

$$Rr + Ss + Tt = V$$

Where R, S, T, V are functions of x, y, z, p and q:

 $r = \frac{\partial^2 f}{\partial x^2}$ $s = \frac{\partial^2 f}{\partial x \partial y}$ $t = \frac{\partial^2 f}{\partial y^2}$

(b) Solve: 7

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

by the method of separation of variables.

3. Attempt any *two* of the following:

5 each

8

(a) Solve:

$$\sqrt{p} + \sqrt{q} = 1$$

(b) Solve:

$$\frac{2\partial^2 z}{\partial x^2} + \frac{5\partial^2 z}{\partial x \partial y} - \frac{2\partial^2 z}{\partial y^2} = 0$$

(c) Solve:

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = y \cos x.$$

(d) Solve the wave equation :

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

by D' Alembert's method.

SB-155-2022