This question paper contains 2 printed pages]

SB—147—2022

FACULTY OF SCIENCE

B.Sc. (Third Semester) EXAMINATION

MAY/JUNE, 2022

(New Course)

MATHEMATICS

(Paper-VIII)

(Ordinary Differential Equations)

(Tuesday, 21-6-2022)

Time: 2.00 p.m. to 4.30 p.m.

Time— 2½ Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
 - (iii) Attempt (A) or (B) (a), (b) in Question Nos. 1 and 2.
- 1. (A) Define order and degree of differential equation with example and also explain method to find solution of homogeneous differential equation and solve:

$$(x^2 + y^2)dx - 2xydy = 0$$

$$Or$$

- (B) (a) Define Clairaut's equation and solve:
 - equation and solve: 8
 - (i) $y = (1+p)x + p^2$;
 - $(ii) x^2(y-px) = yp^2.$
 - (b) Solve:

$$x\frac{dy}{dx} - ay = x + 1 7$$

2. (A) Explain finding complementary function of linear differential equation when the auxiliary equation having equal roots, and solve:

15

$$\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} + 4y = 0$$

P.T.O.

(B) (a) Explain the method of finding particular integral corresponding to a term of the form $e^{ax}v$ in the second member, where v being any function of x, and solve :

$$\frac{d^2y}{dx^2} + y = xe^{2x}.$$

(b) Solve:

$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - \frac{dy}{dx} - y = \cos 2x$$

3. Attempt any *two* out of four of the following:

Each of 5 marks

- (a) Solve: (1 + xy)y dx + (1 xy) x dy = 0;
- (b) Explain the Rules I and II for finding Integrating Factors of Mdx + Ndy = 0;
- (c) Solve: $9\frac{d^2y}{dx^2} + 18\frac{dy}{dx} 16y = 0$;
- (d) Solve: $\frac{d^4y}{dx^4} + 4y = 0$.