This question paper contains 2 printed pages]

SB-103-2022

FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. (Third Year) (Fifth Semester)

EXAMINATION

MAY/JUNE, 2022

(New/CBCS Course)

MATHEMATICS

Paper XIII

(Linear Algebra)

(Friday, 17-06-2022)

Time: 10.00 a.m. to 12.30 p.m.

Time— 2.30 Hours

Maximum Marks—40

N.B. := (i) Attempt all questions.

- (ii) Illustrate your answers with suitably labelled diagrams, wherever necessary.
- 1. Prove that a non-empty subset S of a vector space V is a subspace of V if and only if the following conditions are satisfied:
 - (i) If u, $v \in S$ then $U + V \in S$.
 - (ii) If $u \in S$ and α is a scalar then $\alpha u \in S$ and using above property. Show that the set $S = \{p \in \rho/p(x_0) = 0\}$ of all polynomials $p \in P$ which vanishes at a fixed point x_0 is a subspace of P.

Or

Answer each of the following:

(a) If $T: U \to V$ be a linear map, then prove that T is one-one iff N(T) is zero subspace, $\{O_U\}$ of U.

P.T.O.

- (b) Prove that the set $\{(1, 1, 1) (1 -1, 1), (0, 1, 1) \text{ is a basis for a vector space } V_3.$
- 2. For vectors u and $v \neq 0$ in an inner product space V, define vector projection of u along v and prove that every finite-dimensional inner product space has an orthonormal basis.

Or

Answer each of the following:

- (a) Let $T:U\to V$ be a non-singular linear map. Then prove that $T^{-1}:V\to U$ is linear, one-one and onto map.
- (b) If $S: U \to V$ is a linear map, α is a scalar and $P: U \to V$ is defined by $p(u) = \alpha$ [S(u)] for all $u \in U$, then prove that p is linear.

10

- 3. Attempt any *two* of the following:
 - (a) Show that the vectors (1, 0, 1), (1, 1, 0) and (1, 1, -1) in V_3 are linearly independent.
 - (b) Prove that if a vector space V has a basis of n-elements, then every other basis of V also has n-elements.
 - (c) Let $T:U\to V$ and $S:V\to W$ are two linear maps. If S and T are non-singular, then prove that ST is non-singular and $(ST)^{-1}=T^{-1}S^{-1}$.
 - (d) Determine all the eigenvalues of:

$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$