This question paper contains 2 printed pages]

SB-93-2022

FACULTY OF SCIENCE & TECHNOLOGY

B.Sc. (Third Year) (Sixth Semester) EXAMINATION JUNE/JULY, 2022

(CBCS/New Pattern)

MATHEMATICS

Paper - XVII

(Topology)

(Thursday, 16-6-2022)

Time: 10.00 a.m. to 12.30 p.m.

Time—2½ Hours

Maximum Marks—40

- N.B.:— (i) Attempt either A or B for question No. 1 and 2.
 - (ii) All symbols carry usual meanings.
 - (iii) Figures to the right indicate full marks.
- 1. (A) Attempt the following:
 - (a) Let X be a topological space. Suppose that C is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of C such that $x \in C \subset U$. Then show that C is a basis for the topology on X.
 - (b) Show that topologies of R_l and R_k are strictly finner than the standard topology on R.

Or

(B) Attempt the following:

15

- (i) If A is a subspace of X and B is a subspace of Y, then show that the product topology on $A \times B$ is same as the topology $A \times B$ inherits as a subspace of $X \times Y$.
- (ii) Let X be an ordered set in the order topology: Let Y be a subset of X that is convex in X. Then show that the order topology on Y is the same as the topology Y inherits as a subspace of X.

P.T.O.

WT (2)	SB-	-93-	-2022
''-					

- 2. (A) Let X and Y be topological spaces. Let $f: X \to Y$. Then show that the following are equivalent:
 - (i) f is continuous.
 - (ii) For every subset A of X, one has $f(\overline{A}) = \overline{f(A)}$.
 - (iii) For every closed set B of Y, the set f^{-1} (B) is closed in X
 - (iv) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Or

- (B) Attempt the following:
 - (a) Let Y be a subspace of X. Then show that set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.
 - (b) Define Hausdorff space. Hence show that subspace of a Hausdorffsapce is Hausdorff.7
- 3. Attempt any two of the following:

10

- (i) Find any five posssible topologies for a set $X = \{a, b, c\}$.
- (ii) If β is a basis for the topologies on X, then show that the collection $\beta_y = \{B \cap Y \mid B \in \beta\} \text{ is a basis for the subspace topology on Y.}$
- (iii) Let $A \subset X$ and $B \subset Y$. Show that in the space $X \times Y$, $\overline{A \times B} = \overline{A} \times \overline{B}$.
- (iv) If the sets C and D form a separation of X, and if Y is connected subspace of X, then Y lies entirely within either C or D.