This question paper contains 2 printed pages]

SB-95-2022

FACULTY OF SCIENCE

B.Sc. (Third Year) (Sixth Semester) EXAMINATION

MAY/JUNE, 2022

(New/CBCS Pattern)

MATHEMATICS

Paper XVII

(Elementary Number Theory)

(Thursday, 16-06-2022)

Time: 10.00 a.m. to 12.30 p.m.

Time— 2½ Hours

Maximum Marks—40

- N.B. := (i) Attempt all questions.
 - (ii) Figures to the right indicate full marks.
- 1. Given integers a and b, with b > 0. show that there exist unique integers q and r satisfying a = qb + r, $0 \le r < b$. Also find the gcd (12378, 3054) using Euclidean algorithm.

Or

- (a) If p is prime and $p \mid a_1.a_2.....a_n$, then prove that $p \mid ak$ for some k, where $1 \le k \le n$.
- (b) Show that for given integers a and b not both of which are zero, there exist x and y such that gcd(a, b) = ax + by.
- 2. Define congruence modulo n. Let n > 1 be fixed and a, b, c, d be arbitrary integers, then prove that :
 - (i) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$
 - (ii) If $q \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $(a + c) \equiv (b + d) \pmod{n}$ & $ac \equiv bd \pmod{n}$

P.T.O.

					/L'0' & `N0' & Y &
WT	(2))	3000	SB-	-95-2022

- (iii) If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for any positive integer k.

 Or
- (a) Prove that the linear congruence $ax \equiv b \pmod{n}$ has a unique solution if and only if $d \mid b$ where d = gcd(a, n). If $d \mid b$, then it has d mutually incongruent solutions modulo n.
- (b) State and prove Fermat's theorem.
- 3. Attempt any two of the following:
 - (a) Show that if a and b are integers, not both zero then the set $T = \{ax + by \mid x, y \text{ are integers}\}$ is precisely the set of all multiples of d = gcd(a, b).
 - (b) Prove that the number $\sqrt{2}$ is irrational.
 - (c) Show that $2^{20} \equiv 1 \pmod{41}$.
 - (d) If p is prime, prove that $(p-1)! \equiv -1 \pmod{p}$.