This question paper contains 8 printed pages]

ST-119-2022

FACULTY OF SCIENCE

M.Sc. (First Year) (First Semester) EXAMINATION MAY/JUNE, 2022

(CBCS/New Pattern)

CHEMISTRY

Paper-I (CH-412)

(Organic Chemistry)

(Thursday, 30-6-2022)

Time: 9.30 a.m. to 1.15 p.m.

Time— 3.45 Hours

Maximum Marks—75

N.B. : Attempt all questions.

1. Attempt any three of the following:

15

(a) Why the trans isomer (I) undergoes acetolysis 670 times faster than the cis isomer (II) and that the product has the same cis stereochemistry in both cases?

- (b) Explain Hammonds postulate for transition state structure in detail.
- (c) Explain the role of crossover experiment and kinetic isotope effect in determination of mechanism of organic reaction.
- (d) Draw the configuration and specify the R and S enantiomers of 2-chloropentane.

P.T.O.

15

(e) Designate structure I to IV as R or S.

- 2. Attempt any three of the following:
 - (a) Derive the Hammet equation and calculate the substituent constant of the following ethyl benzoate.

(Given data : PK_a value of substituted ethyl benzoate at M-Me = 4.26, P-H = 4.20, NO_2 = 3.49, P-OMe = 4.47, M-Br = 3.80 and PK_aH = 4.20) Calculate :

$$\sigma M-Me = ?$$

$$\sigma M-NO_2 = ?$$

$$\sigma M-Br = ?$$

$$\sigma P-H = ?$$

$$\sigma P-OMe = ?$$

- (b) Explain the terms homoaromaticity and antiaromaticity with suitable example.
- (c) Explain with examples neighbouring group participation.

7

- (d) Explain aromaticity in Benzenoid and Non-Benzenoid aromatic compound.
- (e) Nucleophilic substitution at chiral carbon by SN² mechanism is not accompanied by recemisation but by inversion.
- 3. (a) Write brief notes on:
 - (i) Kinetically and thermodynamically controlled products.
 - (ii) Role of cross over experiments in the determination of the mechanism of organic reactions.

Or

Comment on the following:

(i) Assign E or Z configuration to the following:

(ii) List the following compounds as cis or trans and comment on their chirality:

(b) Predict the product(s) with mechanism of the following:

(a)
$$\rightarrow$$
 Br + KCN \rightarrow EtOH-H₂O \rightarrow

(b)
$$MeO + H_2C \longrightarrow CH \longrightarrow CH_2 \longrightarrow CI \longrightarrow$$

P.T.O.

8

$$(c) \qquad \text{Ph} \qquad \xrightarrow{\text{OH}} X \xrightarrow{\text{ACOK}} Y$$

$$(d) \qquad \begin{array}{c} \text{CH}_3 \\ \\ \text{NaNH}_2 \\ \\ \text{Cl} \end{array}$$

Z = electron withdrawing group.

4. (a) Taking an example of some cyclohexane derivative discuss the effect of conformation on chemical reactivity.

Or

Assign absolute configuration.

- (b) (i) What are annulenes? Explain the aromaticity of [14] annulene.
 - (ii) Explain the stability of carbonion and free radical.

Or

- (i) Smiles Rearrangements.
- (ii) SET Mechanism.

5. Multiple Choice Questions:

5

(i) Which of the following pairs is diastereomers?

P.T.O.

(ii) Among the following the aromatic compound is:

- (iii) 2-Bromobutane on heating with alcoholic alkali forms:
 - (a) α -Butylene only
 - (b) β -Butylene only
 - (c) 20% of β -Butylene + 80% of α -Butylene
 - (d) 80% β-Butylene + 20% α-Butylene
- $(iv) \qquad \text{Unimolecular nucleophilic substitution } [S_N 1] \text{ involves......steps, while} \\ \text{bimolecular nucleophilic substitution involves.....steps:}$
 - (a) Two, one

(b) One, two

(c) Two, two

(d) One, three

(v) In the reaction:

$$CH-CH_3+HBr$$
 \xrightarrow{Heat} , the major product formed is :

$$(a) \qquad \begin{array}{c} \text{CHCH}_3 \\ \text{Br} \end{array}$$

$$(b) \qquad \begin{array}{c} \text{CH}_2\text{CH}_3 \\ \text{Br} \end{array}$$

P.T.O.

WT (8) ST—119—2022

Write short notes on (any two):

10

- (i) Homoaromaticity
- (ii) Taft equation
- (iii) Inclusion compounds.

ST-119-2022

8