This question paper contains 3 printed pages]

ST-13-2022

FACULTY OF SCIENCE

M.Sc. (First Year) (First Semester) EXAMINATION MAY/JUNE, 2022

(CBCS/New Pattern)

CHEMISTRY

CH-411

(Inorganic Chemistry-I)

(Tuesday, 28-6-2022)

Time: 9.30 a.m. to 1.15 p.m.

Time— 3.45 Hours

Maximum Marks—75

1. Solve any three out of six:

- 15
- (a) Explain liability and inertness on the basis of Taubes concept.
- (b) What is SN^2 mechanism? Give the characteristics of SN^2 mechanism.
- (c) Calculate the number of microstates for p^2 and d^5 configuration.
- (d) Determine the ground states term symbol for d^5 configuration.
- (e) Explain optical properties of Nanomaterials.
- (f) Explain top down fabrication.
- 2. Solve any three:

15

- (a) What is electron transfer reaction? Give the characteristics of Inner sphere mechanism.
- (b) Compare between OSM and ISM.

P.T.O.

- (c) Compare two-dimension control in quantum wells.
- (d) Explain scanning electron microscopy technique.
- (e) Explain Laporte selection and spin selection rules.
- (f) Explain Tanabe-Sugano diagram for d^3 configuration.
- 3. Solve the following:

15

(a) Explain the outer sphere mechanism and give essential requisite for electron transfer reaction.

Or

Draw the Orgel diagram for d^1 and d^4 configuration for tetrahedral complexes.

(b) Explain the characteristics of SN^1CB reaction.

Or

Explain one-dimensional control in carbon Nanotubes and Nanowires.

4. Solve of the following:

15

(a) What is SN¹ mechanism in substitution reactions of complex? Give the characteristics of SN¹ mechanism.

Or

Explain DNA and Nanomaterilas.

(b) Give the comparison between d-d transition and charge transfer spectra.

Or

Explain in detail three-dimension control Nanomaterials.

WT (3) ST-13-2022

5. Write short notes on (any *three*):

15

- (a) Anation reaction;
- (b) Self-assembled Nanostructures;
- (c) Metal to ligand charge transfer
- (d) R-S and J-C coupling.

ST—13—2022