This question paper contains 7 printed pages]

ST-14/15-2022

FACULTY OF SCIENCE

M.Sc. (Second Year) (Third Semester) EXAMINATION

MAY/JUNE, 2022

(CBCS/New Pattern)

CHEMISTRY

(CH-511/531)

(Advance Spectro & Copic Methods)

(Tuesday, 28-06-2022)

Time: 2.00 p.m. to 5.45 p.m.

Time— 3.45 Hours

Maximum Marks—75

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) Multiple Choice Questions (MCQs) should be attempt only once on page number three of answer-book with complete answer.
- 1. Attempt any three of the following:

15

- (a) Trans-isomer is found to absorb at longer wavelength with higher value of extinction coefficient as compared to cis-isomer. Explain.
- (b) Explain the effect of intermolecular and intramolecular hydrogen bonding on the position of absorption frequency of a compound.
- (c) Differentiate among ortho, meta and p-xylene on the basis of proton decoupled CMR spectra.
- (d) Mass spectra of P-cresol displays the following peaks:

 "/e 107, 79, 77.
- (e) α-Hydroxy-3-nitroacetophenone shows two carbonyl stretching frequencies.

P.T.O.

2. Attempt any three of the following:

15

(a) Calculate the λ_{max} for the following compounds :

(b) Explain the > C = O absorption frequency in IR-spectra for the following compounds :

(c) Deduce the structure of compound using ${}^{1}\text{H-NMR}$ data :

 $\mathbf{M.F.} \ \mathbf{C_4H_7O_2Br}$

 $^{1}\text{H-NMR}~(\delta_{\text{ppm}})$: ~2.88~(t,~2H)

3.53(t, 2H)

3.68 (S, 3H)

(d) Distinguish the following compounds on the basis of Mass-Spectroscopy.

(e) Deduce the structure of a compound using ¹³C-NMR data:

Mol. formula : $C_5H_{12}O$

CMR (δ_{ppm}) : 14(q), 22(t), 28(t) 32(t), 62(t).

- 3. Solve the following:
 - (a) Deduce the structure of compound based on the following data: 8 Molecular formula: $C_6H_{10}O_2$.

IR (cm^{-1}) : 3000, 1735

1H-NMR ($\delta_{\rm ppm}$) : 6.97(dq., J = 6.8 & 15.2 Hz, 1H) 5.83(d, J = 15.2 Hz, 1H) 4.17 (q, J = 7.2 Hz, 2H) 1.87 (d, J = 6.8 Hz, 3H)

1.27 (t, J = 7.2 Hz, 3H)

 $^{13}\text{C-NMR}~(\delta_{ppm})$: 170, 144, 123, 60, 18, 14.

Or

A compound with molecular weight 116 gave the following spectra information:

- (i) UV : 283 m $\mu \in_{max} 22$
- (ii) IR(cm⁻¹): 3000 2500 (broad), 1715, 1342

(*iii*) ${}^{1}\text{H-NMR} (\delta_{\text{ppm}})$: 2.12 (S, 3H)

: 2.6 (t, 2H)

: 2.25 (t, 2H)

: 11.10 (S, 1H)

Find the structural formula of the compound.

P.T.O.

(b) Distinguish between the following pairs using the PMR-Spectra. 7

$$\begin{array}{c} \operatorname{CH_3} \\ \\ \\ \operatorname{CH_3} \\ \\ \operatorname{CH_3} \\ \end{array} \quad \begin{array}{c} \operatorname{CH_3} \\ \\ \operatorname{CH_3} \\ \end{array}$$

Or

Distinguish between the following pairs using the indicated method.

4. Solve the following:

8

(a) A compound with M.F. $C_{10}H_{15}NO$ displays the following spectral data:

IR (cm⁻¹): Broad peak at 3300 cm⁻¹

$$^{1}\text{H-NMR } (\delta_{\text{ppm}}) \qquad 7.1 \ (2\text{H}, \ d, \ \text{J} = 7.3 \ \text{Hz})$$

$$6.8 \ (2\text{H}, \ d, \ \text{J} = 7.3 \ \text{Hz})$$

$$4.05 \ (1\text{H}, \ q, \ \text{J} = 6.6 \ \text{Hz})$$

$$3.8 \ (3\text{H}, \ \text{S})$$

$$2.4 \ (3\text{H}, \ \text{S})$$

$$1.45 \ (1\text{H}, \ \text{S})$$

 $^{13}\text{C-NMR}\ (\delta_{ppm})$: 159, 131, 129, 110, 60.5, 56, 33, 21

Or

1.35 (3H, d, J = 6.61)

An organic compound with the following data:

 $M.F. = C_{10}H_{13}O_2N.$

I.R. (cm^{-1}) : Broad band between $3600 - 3400 \text{ cm}^{-1}$, 1725 cm^{-1}

1H-NMR (δ_{ppm}) : 1.33 (t, J = 6 Hz, 9mm)

2. 11 (S, 9 mm)

4.15 (q, J = 6 Hz, 6 mm)

6.85 (d, J = 9 Hz, 6 mm)

7.40 (d, J = 9 Hz, 6 mm)

8.0 (S, 3 mm)

 C^{13} -NMR (δ_{ppm}): 14, 29, 60, 113, 118, 130, 151, 166.

Deduce the structure.

P.T.O.

(b) Explain the genesis of the ions:

7

m/e = 117, 91, 90, 77, 65

m/e = 108, 107, 106, 105, 77, ,79

Or

A compound $C_5H_{11}OCl$ shows the following NMR spectrum. Deduce its structure :

- 5. (a) Select the correct answer from the following Multiple Choice Questions and rewrite complete answer:
 - (i) NMR-spectroscopy is used for determining structures in which of the following materials ?
 - (a) Radioactive materials

(c) MacLafferty rearrangement.

Chromophore and Auxochrome

(b)