This question paper contains 4 printed pages]

NA-12-2023

FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. (Second Year) (Fourth Semester) EXAMINATION

NOVEMBER/DECEMBER, 2023

(CBCS/New Pattern)

CHEMISTRY

Paper-VIII

(Organic and Inorganic Chemistry)

(Tuesday, 5-12-2023)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

N.B. :— Attempt all questions.

1. Solve any *three* of the following

- 15
- (a) Give the Electronic configuration of 3rd transition series elements.
- (b) Explain the separation of lanthanide series elements by ion exchange method.
- (c) Give comparison between lanthanides and actinides.
- (d) Explain the following properties of first transition series element:
 - (i) Complex formation
 - (ii) Magnetic properties.
- (e) How is uranium extracted from pitchblend by acid digestion method?

P.T.O.

2. Solve any three of the following:

1.5

- (a) What are carbohydrates? How are they classified?
- (b) What is the geometrical isomerism? Give the E and 2 nomenclature of the following compound:
 - (i) 2-pentene
 - (ii) Meleic acid.
- (c) What is the action of the following on urea?
 - (i) Action of heat
 - (ii) Nitrous acid
 - (iii) Thionyl chloride
 - (iv) Formaldehyde
 - (v) Acetyl chloride.
- (d) Predict the product:

(i)
$$CH_3 - CHO \xrightarrow{SeO_2}$$

(ii)
$$CH_2 = CH_2 \xrightarrow{OsO_4}$$

(iv)
$$R - CH = CH_2 \xrightarrow{O_3} \xrightarrow{H_2O}$$

(e) What is isomerism? Explain types of structural isomerism.

3. Solve any two of the following:

10

- (a) How will you convert fructose to glucose?
- (b) Explain element of symmetry in detail.
- (c) What is mutarotation? Give its mechanism.
- (d) Predict the product :

$$(i) \qquad \begin{array}{c} \text{NO}_2 \\ \\ \text{Fe/H}_2\text{O} \end{array} \rightarrow$$

P.T.O.

WT (4) NA—12—202

$$(ii) \qquad \begin{array}{c} \text{NO}_2 \\ \\ + \text{conc. HNO}_3 \end{array} \xrightarrow{\text{conc.H}_2 \text{SO}_4} \rightarrow \\ \end{array}$$

$$(iii) \quad \mathrm{CH_2} - \mathrm{N_2} + \bigodot \longrightarrow$$

$$(iv)$$
 $CH_2 - N_2 \xrightarrow{Heat}$

$$(v) \qquad \overbrace{\qquad \qquad \frac{\text{Electrolytic}}{\text{Reduction}}}^{\text{NO}_2}$$

NA = 12 = 2023