This question paper contains 3 printed pages]

NA-56-2023

FACULTY OF SCIENCE & TECHNOLOGY

B.Sc. (Third Year) (Sixth Semester) EXAMINATION NOVEMBER/DECEMBER, 2023

(CBCS/New Pattern)

MATHEMATICS

Paper-XVII

(Topology)

(Wednesday, 13-12-2023)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) Attempt either A or B for question Nos. 1 & 2.
 - (ii) All symbols carry usual meanings.
 - (iii) Figures to the right indicate full marks.
- 1. (A) Attempt the following:
 - (i) Define topology on a Set X. Let X be a three element set $X=\{a,b,c,\}$ then find any six topologies on X.
 - (ii) Show that the topologies of \mathbf{R}_l and \mathbf{R}_k are strictly finer than the standard topology on \mathbf{R} .

Or

- (B) Attempt the following:
 - Define subspace topology. Hence show that if β is a basis for the topology on X, then the collection $\beta_y = \{B \cap Y/B \in \beta\}$ is a basis for the subspace topology on Y.

P.T.O.

WT	(2)		NA-56-202
----	-----	--	-----------

- (ii) If A is a subspace of X and B is a subspace of Y, then show that the product topology on $A \times B$ is the same as the topology $A \times B$ inherits as a subspace of $X \times Y$.
- 2. (A) Let X and Y be topological spaces. Let $f: X \to Y$. Then show that the following are equivalent:
 - (i) f is continuous
 - (ii) For every subset A of X one has $f(\overline{A}) = \overline{f(A)}$
 - (iii) For every closed set B of Y the set $\overline{f}^1(B)$ is closed in X.
 - (iv) For each $x \in X$ and each neighborhood V of f(x) there is a neighborhood U of x such that $f(U) \subset V$.

Or

- (B) Attempt the following:
 - (i) Define limit point. Let A be a subset of the topological spece X, let A' be the set of all limit points of A. Then show that : $\overline{A} = A \cup A'.$
 - (ii) Show that the product of two Hausdorff spaces is Hausdorff space.7
- 3. Attempt any *two* of the following: 5+5
 - (a) Let x be a set, let B be a basis for a topology λ on X. Then show that λ equals the collection of all union of element of β .

WT (3) NA—56—2023

(b) Show that the collection

$$S = \{\pi_1^{-1}, (U)/U \text{ is open in } U\}$$

$$\{\pi_2^{-1},(V)/V \text{ is open in } Y\}$$

is a sub-basis for the product topology on $X \times Y$.

- (c) Let Y be a subspace of X. Then show that a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.
- (d) Show that the subspace X of R where $X = \{0\}U\{1 / n / n \in \mathbb{Z}_+\}$ is compact.