This question paper contains 2 printed pages]

NA-57-2023

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Third Year) (Sixth Semester) EXAMINATION

NOVEMBER/DECEMBER, 2023

(New/CBCS Pattern)

MATHEMATICS

Paper-XVII(B)

(Mechanics-II-Dynamics)

(Wednesday, 13-12-2023)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Find radial and transverse components of acceleration.

15

7

- Or
- (A) A bullet of mass m moving with velocity v strikes the block of mass M of thickness a, find the resistance of the block, supposed to be uniform, if the bullet can penetrate through the distance a/2. if the block is free to move, through what distance the bullet penetrates, the resistance remaining the same.
- (B) Explain the principle of conservation of linear momentum.
- 2. Prove that in a conservative field of force, the sum of kinetic energy and potential energy of a particle at every point, is constant.

Also show that the velocity of a particle increases from \vec{V}_1 to \vec{V}_2 , then the

P.T.O.

WT (2) NA-57-2023

gain in the K.E. is half the scalar product of impulse and the sum of V_1 and V_2 . $\begin{tabular}{ll} \hline \end{tabular}$

Or

- (A) Derive the range on an inclined plane of a particle projected with velocity \vec{u} making an angle α with the horizontal.
- (B) A particle projected at an angle of elevation $\sin^{-1}\left(\frac{4}{5}\right)$, and its range on the horizontal plane is 4 miles. Find the velocity of projection and velocity at the highest point of its path.
- 3. Attempt any two of the following:

10

- (i) A man can throw a cricket ball upto 160 meters and no more. With what speed, in metre per sec., must it be thrown? (Take g = 980 cm/sec²)
- (ii) Find the work done by the force $\vec{F} = 2xi + 2yj$ in moving a particle from P(1, 2) to Q(3, 2).
- (iii) Prove that the change in kinetic energy of the particle is equal to the work done.
- (iv) A point describes a cycloid $S = 4a\sin\psi$ with uniform speed v. Find its acceleration at any point in terms of v, a and s.