This question paper contains 3 printed pages]

NA-79-2023

FACULTY OF SCIENCE/ARTS

B.Sc./B.A. (Third Year) (Fifth Semester) EXAMINATION NOVEMBER/DECEMBER, 2023

(CBCS/New Pattern)

MATHEMATICS

Paper XIV

(Mechanics-I)

(Saturday, 16-12-2023)

Time: 10.00 a.m. to 12.00 noon

Time—Two Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use of non-scientific/non-programmable calculator is allowed.
- 1. Find the magnitude and direction of the resultant of any number of coplanar forces acting at a point and if a particle is acted upon by three forces in one plane, equal to 2, $2\sqrt{2}$ and 1 kg respectively. The first force is horizontal, the second acts at 45° to the horizontal and the third is vertical. Find the magnitude and direction of the resultant.

Or

- (a) State and prove polygone of forces.
- (b) Prove that if three like or unlike parallel forces be in equilibrium, the magnitude of each force varies as the distance between the other two.

P.T.O.

8

2. Prove that the necessary and sufficient condition that a given system of forces acting upon a rigid body is in equilibrium is that the force sum and moment sum must separately vanish and if a Force \vec{F} of magnitude 8 units act at a point P(2, 3, 4) along the line:

$$\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$$

find the moment of force \overrightarrow{F} about x-axis.

Or

- (a) Prove that the necessary and sufficient condition for a system of forces acting on a particle to be in equilibrium is that the algebraic sum of the resolved parts of the given forces along any three non-coplanar directions must separately vanish.
- (b) D, E, F are the middle points of the sides BC, CA and AB respectively of a \triangle ABC. Three forces represented by \overrightarrow{AD} , $\frac{2}{3}$ \overrightarrow{BE} and $\frac{1}{3}$ \overrightarrow{CF} act at a point inside the \triangle ABC, then prove that their resultant is represented by $\frac{1}{2}$ \overrightarrow{AC} and its line of action divides BC in the ratio 2:1.
- 3. Attempt any two of the following:
 - (a) Find the magnitude and direction of the resultant of two forces \vec{P} and \vec{Q} when the magnitude of \vec{P} and \vec{Q} are equal.

WT (3) NA—79—2023

- (b) Prove that if the three forces acting on a particle are in equilibrium, they can be represented both in magnitude and direction by the sides of triangle, taken in order, and drawn parallel to the given forces.
- (c) If A and B are two smooth pegs in a horizontal line at a distance 5 m apart, two light enextensible string CA and CB of lengths 3 m and 4 m respectively attached to pegs, find the tensions in the strings, when a weight of 10 kg is suspended from C.
- (d) Find the vector moment of a Force \vec{F} of magnitudes 10 units acting at a point (1, 2, 3) in the direction of the vector $2\vec{i} + \vec{j} + 2\vec{k}$ about the point (2, 3, 1).