This question paper contains 3 printed pages]

NEPNY-42-2023

FACULTY OF SCIENCE

M.Sc. (NEP) (First Semester) EXAMINATION NOVEMBER/DECEMBER, 2023

CHEMISTRY

Paper-SCHEC-403

(Physical Chemistry–I)

(Tuesday, 26-12-2023)

Time: 10.00 a.m. to 1.00 p.m

Time—3 Hours

Maximum Marks—80

- N.B. := (i) Question No. 1 is compulsory.
 - (ii) Solve any three questions from Q. No. 2 to Q. No. 6.
 - (iii) Use of log table and calculator is allowed.
 - (iv) Figures to the right indicate full marks.
- 1. Solve the following:

20

- (a) State and explain any five postulates of quantum mechanics.
- (b) Calculate the mean activity coefficient, $\sqrt{\pm}$ of
 - (i) 0.01 m NaCl and
 - (ii) 0.001 m Na_2SO_4 in aqueous solution at 25°C.
- (c) Discuss in detail the Debye-Falkenhagen effect as applied to strong electrolytes.

P.T.O.

WT	<i>(</i>)(2)	NEF	PNY-42-	-2023
		0.0			

- (d) What are solid state imperfections?
 - Explain: (i) Schottky defects and (ii) Frenkel defects.
- 2. Solve the following:

20

- (a) State the Schrödinger's wave equation in polar co-ordinate system and use it to obtain phi-equation, theta-equation and radial equation for hydrogen and hydrogen-like systems.
- (b) Derive the Lippmann equation for surface excess phenomenon.
- 3. Solve: 20
 - (a) What is symmetry number?

Calculate the rotational partition function and characteristics rotational temperature for H_2 gas at 2727°C given that $K = 1.38 \times 10^{-23}$ J/kg, $h = 6.626 \times 10^{-34}$ JS, $\sigma = 2$ and $I = 4.6033 \times 10^{-48}$ kgm².

- (b) What are ternary systems? Explain the three component system involving two pairs of partially miscible liquids with a suitable phase diagram.
- 4. Solve the following:

20

- What is meant by Zero-point energy? Explain its significance. An electron in 1D-box of length $10\,\mathrm{\mathring{A}}$ undergo a transition from ground state to second excited state. Calculate the wavelength of photon absorbed. Given that $h=6.626\times10^{-34}\mathrm{Js},\ \mathrm{M}_e=9.109\times10^{-31}\ \mathrm{kg}$ and $\mathrm{C}=3\times10^8\ \mathrm{ms^{-1}}.$
- (b) Why $\lim_{P \to 0} \frac{F}{P} = 1$?

WT		(3) NEPNY—42—2023
		Describe a method for determination of fugacity of a gas at any pressure
		from P-V-T data.
5.	Solve	
	(a)	What is zeta potential?
		Describe Gouy-Chapman theory of electrical double layer.
	(<i>b</i>)	Define:
		(i) ionisation potential and
		(ii) lattice energy.
	How	does the Born-Haber cycle explain the stability of ionic compounds?
6 .	Write	short notes on the following:
	(a)	Zeeman's splitting a quantum mechanical approach.
	(b)	EMF method for determination of activity and activity coefficients.
	(0)	Two solid and a liquid component Futactic systems

theory of strong electrolytes.

Relaxation effect and Electrophoretic effect in Debye-Hückel-Onsager