This question paper contains 3 printed pages]

NEPNY-52-2023

FACULTY OF SCIENCE

M.Sc. (NEP) (First Semester) EXAMINATION NOVEMBER/DECEMBER, 2023

PHYSICS

SPHYC-403

(Numerical Techniques and C-Programming)

(Tuesday, 26-12-2023)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

 $\pmb{N.B.} := (i)$ All questions carry equal marks.

- (ii) Q. No. 1 is compulsory.
- (iii) Solve any three of the remaining five questions (Q. No. 2 to Q. No. 6).
- (iv) Figures to the right indicate full marks.
- (v) Use of scientific calculator is allowed.
- 1. Solve the following questions (5 marks each):

20

- (a) Derive an expression for Newton Forward interpolation formula.
- (b) Evaluate:

$$\int_{0}^{1} \frac{dx}{1+x^{2}}$$
 using Simpson's $\frac{1^{rd}}{3}$ rule.

- (c) Discuss Gauss elimination method for the solution of simultaneous equations.
- (d) Executable and non-executable statements in C-programming.

P.T.O.

WT	1			(2) () () () () () () () () () (NEPNY-	-52-2023				
2.	(a)	Derive New	ton's for	ward diff	erence inte	erpolation	formula a	and for the				
		data constru	a construct the forward difference formula, hence, find $f\left(0.5\right).10$									
		\boldsymbol{x}	-2	a i	0	1	2	3				
		f(x)	15	5 5	1	3	11 (5	25				
	(b)	Find the approximate value of I, $I = \int_0^1 \frac{dx}{1+x}$, using the trapezium rule										
		with 2, 4 an absolute err		al subinte	ervals. Usi	ng the ex	act solutio	n, find the 10				
3.	(a)	Solve the sy	ystem of	equation	ns			10				
			x_1	$+10x_2$ –	$x_3 = 3$							
			$2x_1$	+ 3x ₂ +	$20x_3 = 7$							
	W. Carlotte	$10x_1 - x_2 + 2x_3 = 4$										
		using the Gauss elimination method.										
	(b)	Discuss Bui	lt in and	d user de	efined fund	ctions in	detail.	10				
4.	(a)	a) Discuss Bisection method and find a real root of eq										
		$x^3 - 2x - 5$	= 0 usi	ng Bisec	tion metho	od.		10				
	(b)	Find inverse	e of the	matrix				10				
		3	3 using	r Gauss–	Jordan me	ethod						

(a)

Derive Newton-Cotes formula for the numerical integration.

Write a C-programme for the addition of two 3×3 matrix.

10

10

WT	5	3)&)°	NEPNY-52-5	2023

- 6. Solve the following questions (5 marks each):
 - (a) Linear interpolation
 - (b) What are random numbers? How random numbers are generated in C-programming?
 - (c) Euler method
 - (d) Solution of elliptic equation using finite difference method.

NEPNY-52-2023