

Dept. of Physics

DEGLOOR COLLEGE, DEGLOOR

Sem IV Paper VIII

MCQ Practice set

- 1. Newton's formula is
 - a) $x_1 x_2 = f_1 f_2$
 - b) $\frac{x_1}{x_2} = \frac{f_1}{f_2}$
 - c) $\frac{x_1}{f_1} = \frac{f_2}{x_2}$
 - d) Both (a) & (c)
- 2. The formula for equivalent focal length of a coaxial system is
 - a) $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} \frac{d}{f_1 f_2}$
 - b) $\frac{1}{f} = \frac{1}{f_1} \frac{1}{f_2} + \frac{d}{f_1 f_2}$
 - c) $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{d}{f_1 f_2}$
 - d) None of the above
- 3. The value of 1st & 2nd principal point of an coaxial system resp. is
 - a) $\alpha = \frac{fd}{f_1}$, $\beta = \frac{fd}{f_2}$
 - **b**) $\alpha = \frac{fd}{f_2}, \beta = -\frac{fd}{f_1}$
 - c) $\alpha = -\frac{fd}{f_2}$, $\beta = \frac{fd}{f_1}$
 - d) $\alpha = -\frac{fd}{f_1}$, $\beta = \frac{fd}{f_2}$
- 4. The value of 1^{st} & 2^{nd} focal point is
 - a) $L_1 F_1 = -f \left(1 \frac{d}{f_2}\right), L_2 F_2 = -f \left(1 \frac{d}{f_1}\right)$
 - b) $L_1F_1 = -f\left(1 \frac{d}{f_2}\right), L_2F_2 = f\left(1 \frac{d}{f_1}\right)$
 - c) $L_1 F_1 = -f \left(1 + \frac{d}{f_1} \right), L_2 F_2 = f \left(1 + \frac{d}{f_1} \right)$

d)
$$L_1F_1 = f\left(1 + \frac{d}{f_1}\right)$$
, $L_2F_2 = -f\left(1 + \frac{d}{f_1}\right)$

- 5. Which of the following eyepiece is free from spherical & chromatic aberrations?
 - a) Huygen's eyepiece
 - b) Ramsden's eyepiece
 - c) Both of the above
 - d) None of the above
- 6. The equivalent focal length of Huygen's eyepiece is
 - a) $F = \frac{3}{4}f$
 - b) $F = \frac{3}{2}f$
 - c) $F = \frac{\bar{f}}{2}$
 - d) $F = \frac{2}{3}f$
- 7. The position of principal points of Huygen's eyepiece is
 - a) $\alpha = 3f$, $\beta = -f$
 - b) $\alpha = -f$, $\beta = 3f$
 - c) $\alpha = -3f$, $\beta = f$
 - d) $\alpha = \frac{f}{2}$, $\beta = -\frac{f}{2}$
- 8. The ratio of focal length of Huygen's plano-convex lens is
 - a) 3:1
 - b) 1:1
 - c) Both
 - d) None of above
- 9. The equivalent focal length of Ramsden's eyepiece is
 - a) $F = \frac{3}{4}f$
 - b) $F = \frac{3}{2}f$
 - c) $F = \frac{f}{4}$
 - $d) F = \frac{4}{3}f$
- 10. The position of principal points of Ramsden's eyepiece is
 - a) $\alpha = \frac{f}{2}$, $\beta = -\frac{f}{2}$
 - b) $\alpha = 3f$, $\beta = -f$
 - c) $\alpha = -\frac{f}{2}$, $\beta = \frac{f}{2}$

d)
$$\alpha = -3f$$
, $\beta = f$

- 11. Newton's rings are example of
 - a) Fringes of equal thickness
 - b) Fringes of unequal thickness
 - c) Fringes of variable thickness
 - d) None of the above
- 12. The radii of fringes of Newton's ring is proportional to
 - a) $\frac{1}{\sqrt{\lambda}}$
 - b) $\sqrt{\lambda}$
 - c) λ
 - d) $\frac{1}{\lambda}$
 - 13. The wavelength of sodium light using Newton's ring is
 - a) $\lambda = \frac{D_{m+p}^2 D_m^2}{4PR}$
 - b) $\lambda = \frac{slope}{4R}$, slope $= \frac{D_{m+p}^2 D_m^2}{P}$
 - c) Both (a) & (b)
 - d) None of above
 - 14. The wavelength of monochromatic light using Michelson interferometer

is

- a) $\lambda = \frac{2d}{N}$
- b) $\lambda = \frac{2N}{d}$
- c) $\lambda = \frac{d}{2N}$
- d) $\lambda = \frac{d}{N}$
- 15. The difference in wavelength betⁿ two neighbouring lines in Michelson interferometer is
 - a) $\lambda_1 \lambda_2 = \frac{\lambda_1 \lambda_2}{d}$
 - b) $\lambda_1 \lambda_2 = \frac{\lambda_1 \lambda_2}{2d}$ c) $\lambda_1 \lambda_2 = \frac{d}{\lambda_1 \lambda_2}$

- d) None of above
- 16. Bending of light around the edges is called
 - a) Interference
 - b) Diffraction
 - c) Polarization
 - d) None of the above
- 17. In Fresnel's diffraction, source of light & screen are at
 - a) Finite distance
 - b) Infinite distance
 - c) Both
 - d) None of above
- 18. In Fraunhoffer's diffraction, source of light & screen are at
 - a) Finite distance
 - b) Infinite distance
 - c) Both
 - d) None of above
- 19. The position of minimum intensity due to single slit is given by
 - a) $sin\theta_n = \frac{(2n+1)\lambda}{2a}$
 - b) $sin\theta_n = \frac{n\lambda}{a}$ c) $sin\theta_n = \frac{na}{\lambda}$

 - d) None of the above
- 20. The value of the grating constant (a+b) is

- 21. Resolving power of grating is

 - a) $\frac{d\lambda}{\lambda} = nN$ b) $\frac{\lambda}{d\lambda} = nN$ c) $\frac{\lambda}{d\lambda} = t \cdot \frac{d\mu}{d\lambda}$
 - d) None of the above
 - 22. Resolving power of prism is
 - a) $\frac{\lambda}{d\lambda} = nN$
 - b) $\frac{d\lambda}{\lambda} = nN$
 - c) $\frac{\lambda}{d\lambda} = t \cdot \frac{d\mu}{d\lambda}$
 - d) None of the above
 - 23. Restriction of light into single plane is called
 - a) Interference
 - b) Diffraction
 - c) Polarization
 - d) None of the above
 - 24. Brewster's equation is
 - a) $\mu = tan\theta_B$
 - b) $\mu = \sin \theta_B$
 - c) $\mu = \cot \theta_B$
 - d) None of the above
 - 25. According to Malus, intensity transmitted through analyser is proportional to
 - a) Square of sin **0**
 - b) Square of cos *\theta*
 - c) Square of tan **0**
 - d) Square of cot **0**

26. T	he ray which obeys Snell's law of refraction is known as
a) Ex	traordinary ray
b) O :	rdinary ray
c) Bo	oth of the above
d) No	one of the above
27. Th	e ray which doesn't obey Snell's law of refraction is known as
a) E	xtraordinary ray
b) O	rdinary ray
c) B	oth of the above
d) N	one of the above
28. Q	uarter wave plate produces path difference of bet ⁿ e-ray & o-ray.
a) $\frac{\lambda}{2}$	
b) $\frac{\lambda}{4}$	
c) λ	
d) N	None of above
29. H	Ialf wave plate produces path difference ofbet ⁿ e-ray & o-ray
$\mathbf{a})\frac{2}{3}$	<u>1</u> 2
b) $\frac{2}{3}$	<u>1</u> 4
c) /	ો
d) I	None of the above
30. 7	The amount of rotation $\boldsymbol{\theta}$ is directly proportional to
a)	$\frac{1}{l}$
b)	l

`	7	2
~ 1	1	_
$\boldsymbol{\mathcal{C}}_{J}$	ι	

- d) None of the above
- 31. The LASER is acronym for
 - a) Light amplification through spontaneous emission of radiation
 - b) Light amplification through stimulated emission of radiation
 - c) Light amplification through spontaneous & stimulated emission of radiation
 - d) None of the above
- 32. The different processes when photons travel through medium is
- a) Absorption
- b) Spontaneous emission
- c) Stimulated emission
- d) All of the above
- 33. The probability of absorption transition is
 - a) $P_{12} = B_{21} \rho(v)$
 - b) $P_{12}=B_{12}\rho(v)$
 - c) $P_{12} = A_{21}$
 - d) $P_{21} = B_{21} \rho(v)$
- 34. The probability of spontaneous emission transition is
 - a) $P_{12} = B_{21} \rho(v)$
 - b) $P_{12} = B_{12} \rho(v)$
 - c) $P_{21} = A_{21}$
 - d) $P_{21} = B_{21} \rho(v)$
- 35. The probability of stimulated transition is
 - a) $P_{21} = B_{21} \rho(v)$
 - b) $P_{21} = B_{21}$
 - c) $P_{21}=B_{21}\rho(v)$
 - d) $P_{21} = A_{21}$
- 36. The condition of population inversion is
 - a) $N_1 >> N_2$
 - **b**) $N_2 >> N_1$

- c) $N_1 = N_2$
- d) None of the above
- 37. He Ne laser generates light of wavelength
 - a) 6428 A°
 - b) 6328 A°
 - c) 6028 A°
 - d) 6128 A°
- 38. Which of the following is the useful transition in He Ne laser is
 - a) $E_6 \rightarrow E_3$
 - b) $E_2 \rightarrow E_1$
 - c) $E_6 \rightarrow E_5$
 - d) $E_5 \rightarrow E_4$
- 39. In diode laser, the n- type & p- type is formed resp. by
 - a) Zinc & GaAs
 - b) GaAs & Zinc
 - c) Only Zinc
 - d) Only GaAs
- 40. Important characteristics or properties of laser is
 - a) Directionality & negligible coherence
 - b) High intensity & monochromaticity
 - c) High degree of coherence
 - d) All of the above

