SWAMI RAMANAND TEERTH MARATHWADA UNIVERSITY, NANDED

## MCQ QUESTION PAPER SET 1

## SUBJECT: PHYSICS

SEM -III
MAX.MARKS:40

CLASS: B.Sc. SECOND YEAR
PAPER-VI
TIME DURATION: 1 HR.

## TITLE: WAVES AND OSCILLATIONS

1. Relation between wave velocity $(v)$, frequency $(\mathrm{n})$ and wavelength $(\lambda)$ is:
a) $\quad v=n \lambda$
b) $\quad v=\frac{n}{\lambda}$
c) $\quad v=\frac{\lambda}{n}$
d) $\quad v=n^{2} \lambda$
2. The general equation of simple harmonic progressive wave is :
a) $y=a \sin \frac{\pi}{\lambda}(v t-x)$
b) $\quad y=a \sin \frac{2 \pi}{\lambda}(v t-x)$
c) $y=a \sin \frac{\pi}{2 \lambda}(v t-x)$
d) $y=a \sin \frac{3 \pi}{\lambda}(v t-x)$
3. Differential equation of wave motion is:
a) $\frac{d^{2} y}{d x^{2}}=v^{2} \frac{d^{2} y}{d t^{2}}$
b) $\frac{d^{2} y}{d t^{2}}=v^{2} \frac{d^{2} y}{d x^{2}}$
c) $\frac{d^{2} y}{d x^{2}}=v \frac{d y}{d t}$
d) $\frac{d^{2} y}{d t^{2}}=v \frac{d^{2} y}{d x^{2}}$
4. The energy of progressive wave is :
a) Partly kinetic
b) Partly potential
c) Partly kinetic and partly potential
d) Neither kinetic nor potential
5. Velocity of transverse waves along stretched string is:
a) $\quad v=\frac{T}{m}$
b) $\quad v=\frac{m}{T}$
c) $v=\sqrt{\frac{m}{T}}$
d) $\quad v=\sqrt{\frac{T}{m}}$
6. When a simple harmonic progressive wave is propagated trough medium, the displacement of a particle in cm at any instant is given by $y=10 \sin \frac{2 \pi}{100}(36000 t-20)$ Then amplitude of wave is:
a) 100 cm
b) 20 cm
c) 36000 cm
d) 10 cm
7. The fundamental frequency of vibration of stretched string is:
a) $n=\frac{1}{2 l} \sqrt{\frac{T}{m}}$
b) $n=\frac{1}{l} \sqrt{\frac{T}{m}}$
c) $\quad n=\frac{1}{3 l} \sqrt{\frac{T}{m}}$
d) $n=\frac{1}{4 l} \sqrt{\frac{T}{m}}$
8. Progressive wave can transfer:
a) Only matter
b) Only energy
c) Both energy and matter
d) Neither energy nor matter
9. The period of vibration of stretched string is:
a) $T=l \sqrt{\frac{m}{T}}$
b) $\quad T=2 l \sqrt{\frac{m}{T}}$
c) $\quad T=3 l \sqrt{\frac{m}{T}}$
d) $\quad T=4 l \sqrt{\frac{m}{T}}$
10. The relation between particle velocity $(U)$ and wave velocity $(v)$ is:
a) $U=-v\left(\frac{d y}{d t}\right)$
b) $\quad U=-v^{2}\left(\frac{d y}{d x}\right)$
c) $\quad U=-v\left(\frac{d y}{d x}\right)$
d) None of above is correct
11. In stationary waves the distance between two adjacent nodes is:
a) $\lambda$
b) $\frac{\lambda}{4}$
c) $\frac{\lambda}{2}$
d) $\frac{\lambda}{3}$
12. In stationary waves, nodes are the points of ...
a) Maximum displacement
b) Adequate displacement
c) Moderate displacement
d) Zero displacement
13. In stationary waves, amplitude of vibration gradually $\qquad$ from

Node to antinode
a) Decreases
b) Increases
c) Remains same
d) None of above is correct
14. When waves are setup in a fluid, the excess of pressure is given by:
a) $\quad p=-E \frac{d y}{d x}$
b) $\quad p=-E \frac{d y}{d t}$
c) $\quad p=-E \frac{d^{2} y}{d t^{2}}$
d) $\quad p=-E \frac{d^{2} y}{d x^{2}}$
15. In a stationary wave at antinodes:
a) Change in Pressure and density is greater than normal
b) Change in Pressure and density is less than normal
c) No change in pressure and density
d) All above are correct
16. Which of the following statement about stationary waves is/are correct.?
a) Stationary waves transfer energy through the medium
b) Stationary waves do not transfer energy through the medium
c) Stationary waves continuously travel in a specific direction
d) Stationary waves are progressive waves
17. The total energy per wavelength in stationary wave is $\qquad$ that in progressive wave.
a) Equal
b) Half
c) Double
d) Quarter
18. Stationary waves are formed in a medium such that the distance between two successive nodes is found to be 0.8 cm . What is the distance between two successive antinodes?
a) 0.8 cm
b) 0.4 cm
c) 1.6 cm
d) 0.2 cm
19. In a stationary wave at nodes, the velocity of particle is:
a) Maximum
b) Always Zero
c) Never Zero
d) Between Zero and maximum
20. $y=2 a \cos \frac{2 \pi x}{\lambda} \sin \frac{2 \pi v t}{\lambda}$ is the equation of $\ldots$
a) Stationary waves
b) Progressive waves
c) Beats
d) None of above
21. Resonance is the ....
a) Special case of free damped vibration
b) Special case of free undamped vibration
c) Special case of forced vibration
d) None of above correct
22. If pendulum is displaced in vacuum, its amplitude of oscillation:
a) Gradually decreases with time
b) Remains constant
c) Gradually increases with time
d) Initially increases then decreases

23 When a body is maintained in a state of vibration by a periodic force, the type of vibration is:
a) Forced vibration
b) Free damped vibration
c) Free undamped vibration
d) None of above correct
24. The existence of damping can..
a) Decreases in amplitude
b) Increases in amplitude
c) Maintain constant in amplitude
d) None of above are correct

25 At resonance amplitude of oscillation is
a) Zero
b) Minimum
c) In between zero and maximum
d) Maximum
26. The differential equation of free undamped vibration is:
a) $\frac{d^{2} y}{d t^{2}}-n^{2} y=0$
b) $\frac{d^{2} y}{d t^{2}}+2 k \frac{d y}{d t}+n^{2} y=0$
c) $\frac{d^{2} y}{d t^{2}}+n^{2} y=0$
d) $\frac{d^{2} y}{d t^{2}}+2 k \frac{d y}{d t}=0$
27. Aperiodic motion is also called as:
a) Dead beat
b) Critically damped motion
c) Oscillatory motion
d) None of above correct
28. At resonance amplitude of forced vibration is:
a) $A_{m}=\frac{f^{2}}{2 k n}$
b) $A_{m}=\frac{f^{2}}{k n}$
c) $\quad A_{m}=\frac{f}{k n}$
d) $A_{m}=\frac{f}{2 k n}$
29. In a given figure, sharpness of resonance is maximum for

a) Red curve (Middle curve)
b) Black curve (Lower curve)
c) Blue curve (Upper curve)
d) All curves have equal sharpness
30. Period of free undamped vibration is :
a) $\quad T=\pi \sqrt{\frac{m}{\mu}}$
b) $\quad T=\frac{1}{2 \pi} \sqrt{\frac{m}{\mu}}$
c) $\quad T=2 \pi \sqrt{\frac{m}{\mu}}$
d) $\quad T=\frac{1}{\pi} \sqrt{\frac{m}{\mu}}$
31. Persistence of sound even after the source has stopped is known as:
a) Resonance
b) Absorption coefficient
c) Ultrasonic
d) Reverberation
32. Reverberation time should have
a) Very much lower value
b) Optimum value
c) Very high value
d) None of above correct
33. Sound waves of frequency lower than the audible limit are called:
a) Infrasonic
b) Sonic
c) Audible
d) Ultrasonic
34. Ultrasonic waves can be produced by:
a) Galton Whistle Method
b) Magnetostriction Oscillator
c) Piezoelectric oscillator
d) By all above method
35. The velocity of ultrasonic waves through liquid and gases at various temperature is measured by:
a) Acoustic grating
b) Magnetostriction Oscillator
c) Piezoelectric oscillator
d) By all above method
36. Sabine's reverberation time formula is:
a) $t_{1}=\frac{\sum \alpha \mathrm{A}}{0.158 V}$
b) $\quad t_{1}=\frac{\sum \alpha A}{1.58 V}$
c) $t_{1}=\frac{0.158 V}{\sum \alpha A}$
d) $t_{1}=\frac{1.58}{\sum \alpha A}$
37. Acoustics of an auditorium can be improved by:
a) Hanging heavy curtains
b) Having pictures and maps
c) Having few open windows
d) All above are correct
38. The piezo electric effect is more pronounced found in crystals of:
a) Quartz
b) Tourmaline
c) Rochellel salt
d) In all above crystals
39. Absorption coefficient of material is:
a) $\quad \alpha_{2}=\frac{0.158 \mathrm{~V}}{A}\left[\frac{t_{1}-t_{2}}{t_{1} t_{2}}\right]$
b) $\quad \alpha_{2}=\frac{1.58 V}{A}\left[\frac{t_{1}-t_{2}}{t_{1} t_{2}}\right]$
c) $\quad \alpha_{2}=\frac{15.8 V}{A}\left[\frac{t_{1}-t_{2}}{t_{1} t_{2}}\right]$
d) $\quad \alpha_{2}=\frac{158 V}{A}\left[\frac{t_{1}-t_{2}}{t_{1} t_{2}}\right]$
40. The fundamental frequency of vibration of rod in piezo-electric oscillator is:
a) $n=\frac{2 l}{p} \sqrt{\frac{Y}{\rho}}$
b) $\quad n=\frac{l}{p} \sqrt{\frac{Y}{\rho}}$
c) $\quad n=\frac{p}{l} \sqrt{\frac{Y}{\rho}}$
d) $n=\frac{p}{2 l} \sqrt{\frac{Y}{\rho}}$

ANSWER KEYS
MCQ QUESTION PAPER SET 1

SUBJECT: PHYSICS
SEM -III
MAX.MARKS:40

CLASS: B.Sc. SECOND YEAR PAPER-VI
TIME DURATION:1 HR.

TITLE: WAVES AND OSCILLATIONS

| Q.NO. | ANS. |
| :---: | :---: |
| $\mathbf{1}$ | a |
| 2 | b |
| 3 | b |
| 4 | c |
| 5 | d |
| 6 | d |
| 7 | a |
| 8 | b |
| 9 | b |
| 10 | c |


| Q.NO. | ANS. |
| :---: | :---: |
| 11 | c |
| 12 | d |
| 13 | b |
| 14 | a |
| 15 | c |
| 16 | b |
| 17 | c |
| 18 | a |
| 19 | b |
| 20 | a |


| Q.NO. | ANS. |
| :---: | :--- |
| 21 | c |
| 22 | b |
| 23 | a |
| 24 | a |
| 25 | d |
| 26 | c |
| 27 | a |
| 28 | d |
| 29 | c |
| 30 | c |


| Q.NO. | ANS. |
| :---: | :--- |
| 31 | d |
| 32 | b |
| 33 | a |
| 34 | d |
| 35 | a |
| 36 | c |
| 37 | d |
| 38 | d |
| 39 | a |
| 40 | d |

Dr. Bhanudas Narwade
Dr. Fulmanthe
Dr.Nakade Chairman

