SWAMI RAMANAND TEERTH MARATHWADA UNIVERSITY, NANDED MCQ QUESTION PAPER SET 1 SUBJECT: PHYSICS SEM -III PAPER-VI

MAX.MARKS:40

TIME DURATION:1 HR.

TITLE: WAVES AND OSCILLATIONS

- 1. Relation between wave velocity(v), frequency (n) and wavelength (λ) is:
 - a) $v = n\lambda$
 - b) $v = \frac{n}{\lambda}$
 - c) $v = \frac{\lambda}{n}$
 - d) $v = n^2 \lambda$
- 2. The general equation of simple harmonic progressive wave is :
 - a) $y = a \sin \frac{\pi}{\lambda} (vt x)$
 - b) $y = a \sin \frac{2\pi}{\lambda} (vt x)$
 - c) $y = a \sin \frac{\pi}{2\lambda} (vt x)$
 - d) $y = a \sin \frac{3\pi}{\lambda} (vt x)$

3. Differential equation of wave motion is:

a)
$$\frac{d^2 y}{dx^2} = v^2 \frac{d^2 y}{dt^2}$$

b)
$$\frac{d^2 y}{dt^2} = v^2 \frac{d^2 y}{dx^2}$$

c)
$$\frac{d^2 y}{dx^2} = v \frac{dy}{dt}$$

d)
$$\frac{d^2y}{dt^2} = v \frac{d^2y}{dx^2}$$

- 4. The energy of progressive wave is :
 - a) Partly kinetic
 - b) Partly potential
 - c) Partly kinetic and partly potential
 - d) Neither kinetic nor potential
- 5. Velocity of transverse waves along stretched string is:
 - a) $v = \frac{T}{m}$
 - b) $v = \frac{m}{T}$

c)
$$v = \sqrt{\frac{m}{T}}$$

d)
$$v = \sqrt{\frac{T}{m}}$$

6. When a simple harmonic progressive wave is propagated trough medium, the displacement of a particle in cm at any instant is given by

$$y = 10 \sin \frac{2\pi}{100} (36000t - 20)$$
 Then amplitude of wave is:

- a) 100cm
- b) 20 cm
- c) 36000cm
- d) 10cm

7. The fundamental frequency of vibration of stretched string is:

a)
$$n = \frac{1}{2l} \sqrt{\frac{T}{m}}$$

b)
$$n = \frac{1}{l} \sqrt{\frac{T}{m}}$$

c)
$$n = \frac{1}{3l} \sqrt{\frac{T}{m}}$$

d)
$$n = \frac{1}{4l} \sqrt{\frac{T}{m}}$$

- 8. Progressive wave can transfer:
 - a) Only matter
 - b) Only energy
 - c) Both energy and matter
 - d) Neither energy nor matter
- 9. The period of vibration of stretched string is:
 - a) $T = l \sqrt{\frac{m}{T}}$

b)
$$T = 2l\sqrt{\frac{m}{T}}$$

c)
$$T = 3l\sqrt{\frac{m}{T}}$$

d)
$$T = 4l \sqrt{\frac{m}{T}}$$

- 10. The relation between particle velocity (U) and wave velocity (v) is:
 - a) $U = -v(\frac{dy}{dt})$
 - b) $U = -v^2 \left(\frac{dy}{dx}\right)$
 - c) $U = -v(\frac{dy}{dx})$
 - d) None of above is correct

- 11. In stationary waves the distance between two adjacent nodes is:
 - a) λ
 - b) $\frac{\lambda}{4}$
 - 2
 - c) $\frac{\lambda}{2}$
 - d) $\frac{\lambda}{3}$
- 12. In stationary waves, nodes are the points of ...
 - a) Maximum displacement
 - b) Adequate displacement
 - c) Moderate displacement
 - d) Zero displacement
- 13. In stationary waves, amplitude of vibration graduallyfrom

Node to antinode

- a) Decreases
- b) Increases
- c) Remains same
- d) None of above is correct
- 14. When waves are setup in a fluid, the excess of pressure is given by:
 - a) $p = -E \frac{dy}{dx}$
 - b) $p = -E \frac{dy}{dt}$
 - c) $p = -E \frac{d^2 y}{dt^2}$
 - d) $p = -E \frac{d^2 y}{dx^2}$

- 15. In a stationary wave at antinodes:
 - a) Change in Pressure and density is greater than normal
 - b) Change in Pressure and density is less than normal
 - c) No change in pressure and density
 - d) All above are correct
- 16. Which of the following statement about stationary waves is/are correct.?
 - a) Stationary waves transfer energy through the medium
 - b) Stationary waves do not transfer energy through the medium
 - c) Stationary waves continuously travel in a specific direction
 - d) Stationary waves are progressive waves
- 17. The total energy per wavelength in stationary wave is that in progressive wave.
 - a) Equal
 - b) Half
 - c) Double
 - d) Quarter
- 18. Stationary waves are formed in a medium such that the distance between two successive nodes is found to be 0.8cm. What is the distance between two successive antinodes?
 - a) 0.8cm
 - b) 0.4cm
 - c) 1.6cm
 - d) 0.2cm

- 19. In a stationary wave at nodes, the velocity of particle is:
 - a) Maximum
 - b) Always Zero
 - c) Never Zero
 - d) Between Zero and maximum

20. $y = 2a \cos \frac{2\pi x}{\lambda} \sin \frac{2\pi vt}{\lambda}$ is the equation of ...

- a) Stationary waves
- b) Progressive waves
- c) Beats
- d) None of above
- 21. Resonance is the
 - a) Special case of free damped vibration
 - b) Special case of free undamped vibration
 - c) Special case of forced vibration
 - d) None of above correct
- 22. If pendulum is displaced in vacuum, its amplitude of oscillation:
 - a) Gradually decreases with time
 - b) Remains constant
 - c) Gradually increases with time
 - d) Initially increases then decreases

- 23 When a body is maintained in a state of vibration by a periodic force, the type of vibration is:
 - a) Forced vibration
 - b) Free damped vibration
 - c) Free undamped vibration
 - d) None of above correct
- 24. The existence of damping can..
 - a) Decreases in amplitude
 - b) Increases in amplitude
 - c) Maintain constant in amplitude
 - d) None of above are correct
- 25 At resonance amplitude of oscillation is
 - a) Zero
 - b) Minimum
 - c) In between zero and maximum
 - d) Maximum
- 26. The differential equation of free undamped vibration is:
 - a) $\frac{d^2y}{dt^2} n^2y = 0$
 - b) $\frac{d^2y}{dt^2} + 2k\frac{dy}{dt} + n^2y = 0$
 - c) $\frac{d^2y}{dt^2} + n^2y = 0$
 - d) $\frac{d^2y}{dt^2} + 2k\frac{dy}{dt} = 0$

27. Aperiodic motion is also called as:

- a) Dead beat
- b) Critically damped motion
- c) Oscillatory motion
- d) None of above correct
- 28. At resonance amplitude of forced vibration is:

a)
$$A_m = \frac{f^2}{2kn}$$

b)
$$A_m = \frac{f^2}{kn}$$

c)
$$A_m = \frac{f}{kn}$$

d)
$$A_m = \frac{f}{2kn}$$

29. In a given figure, sharpness of resonance is maximum for

a) Red curve (Middle curve)

- b) Black curve (Lower curve)
- c) Blue curve (Upper curve)
- d) All curves have equal sharpness

- 30. Period of free undamped vibration is :
 - a) $T = \pi \sqrt{\frac{m}{\mu}}$

b)
$$T = \frac{1}{2\pi} \sqrt{\frac{m}{\mu}}$$

c)
$$T = 2\pi \sqrt{\frac{m}{\mu}}$$

d)
$$T = \frac{1}{\pi} \sqrt{\frac{m}{\mu}}$$

- 31. Persistence of sound even after the source has stopped is known as:
 - a) Resonance
 - b) Absorption coefficient
 - c) Ultrasonic
 - d) Reverberation
- 32. Reverberation time should have
 - a) Very much lower value
 - b) Optimum value
 - c) Very high value
 - d) None of above correct
- 33. Sound waves of frequency lower than the audible limit are called:
 - a) Infrasonic
 - b) Sonic
 - c) Audible
 - d) Ultrasonic

- 34. Ultrasonic waves can be produced by:
 - a) Galton Whistle Method
 - b) Magnetostriction Oscillator
 - c) Piezoelectric oscillator
 - d) By all above method
- 35. The velocity of ultrasonic waves through liquid and gases at various temperature is measured by:
 - a) Acoustic grating
 - b) Magnetostriction Oscillator
 - c) Piezoelectric oscillator
 - d) By all above method
- 36. Sabine's reverberation time formula is:
 - a) $t_1 = \frac{\sum \alpha A}{0.158V}$

b)
$$t_1 = \frac{\sum \alpha A}{1.58V}$$

c)
$$t_1 = \frac{0.158V}{\sum \alpha A}$$

d)
$$t_1 = \frac{1.58}{\sum \alpha A}$$

- 37. Acoustics of an auditorium can be improved by:
 - a) Hanging heavy curtains
 - b) Having pictures and maps
 - c) Having few open windows
 - d) All above are correct
- 38. The piezo electric effect is more pronounced found in crystals of:
 - a) Quartz
 - b) Tourmaline
 - c) Rochellel salt
 - d) In all above crystals
- 39. Absorption coefficient of material is:

a)
$$\alpha_2 = \frac{0.158V}{A} \left[\frac{t_1 - t_2}{t_1 t_2} \right]$$

b)
$$\alpha_2 = \frac{1.58V}{A} \left[\frac{t_1 - t_2}{t_1 t_2} \right]$$

c)
$$\alpha_2 = \frac{15.8V}{A} \left[\frac{t_1 - t_2}{t_1 t_2} \right]$$

d)
$$\alpha_2 = \frac{158V}{A} \left[\frac{t_1 - t_2}{t_1 t_2} \right]$$

- 40. The fundamental frequency of vibration of rod in piezo-electric oscillator is:
 - a) $n = \frac{2l}{p} \sqrt{\frac{Y}{\rho}}$

b)
$$n = \frac{l}{p} \sqrt{\frac{Y}{\rho}}$$

c)
$$n = \frac{p}{l} \sqrt{\frac{Y}{\rho}}$$

d)
$$n = \frac{p}{2l} \sqrt{\frac{Y}{\rho}}$$

ANSWER KEYS MCQ QUESTION PAPER SET 1 SUBJECT: PHYSICS CLASS: B.Sc. SECOND YEAR SEM -III PAPER-VI MAX.MARKS:40 **TIME DURATION:1 HR.** TITLE: WAVES AND OSCILLATIONS

Q.NO.	ANS.	Q.NO.	ANS.	Q.NO.	ANS.	Q.NO.	ANS.
1	a	11	c	21	c	31	d
2	b	12	d	22	b	32	b
3	b	13	b	23	a	33	a
4	c	14	a	24	a	34	d
5	d	15	с	25	d	35	a
6	d	16	b	26	c	36	c
7	a	17	С	27	a	37	d
8	b	18	a	28	d	38	d
9	b	19	b	29	c	39	a
10	c	20	a	30	c	40	d

Dr. Bhanudas Narwade Dr. Fulmanthe Chairman

Dr.Nakade