Coordination Compounds

Examples of Multiple Choice Questions

1.

The ______ sphere is enclosed in brackets in formulas for complex species, and it includes the central metal ion plus the coordinated groups.

- (a) ligand
- (b) donor
- (c) oxidation
- (d) coordination
- (e) chelating

2.

- In coordination chemistry, the **donor atom** of a ligand is
- (a) a Lewis acid.
- (b) the counter ion
- (c) the central metal atom.
- (d) the atom in the ligand that shares an electron pair with the metal.
- (e) the atom in the ligand that accepts a share in an electron pair from the metal.

3.

Consider the coordination compound, Na₂[Pt(CN)₄]. The Lewis acid is

(a) $[Pt(CN)_4]^{2-}$

- (b) Na⁺
- (c) Pt
- (d) Pt²⁺
- (e) CN⁻

4.

Consider the coordination compound, $K_2[Cu(CN)_4]$. A coordinate covalent bond exists between

(a) K^+ and CN^- (b) Cu^{2+} and CN^-

- (c) K^+ and $[Cu(CN)_4]^{2-}$
- (d) C and N in CN-
- (e) K^+ and Cu^{2+}

Given the list of ligands and their corresponding names, choose the pair that disagree.

- LIGAND NAME
- (a) OH hydroxo
- (b) CN⁻ cyanide
- (c) Cl⁻ chloro
- (d) H₂O aqua
- (e) NH₃ ammine
- 6.

Select the correct IUPAC name for: [FeF4(OH2)2]⁻

- (a) diaquatetrafluoroiron(III) ion
- (b) diaquatetrafluoroferrate(III) ion
- (c) diaquatetrafluoroiron(I) ion
- (d) diaquatetrafluoroferrate(I) ion
- (e) none of these

7.

Select the **correct** IUPAC name for: $[Co(NH_3)_6]^{2+}$

- (a) hexammoniacobaltate(II) ion
- (b) hexaamminecobaltate(II) ion
- (c) hexammoniacobalt(II) ion
- (d) hexaamminecobalt(II) ion
- (e) hexammoniacobalt ion

8.

Which name-formula combination is NOT correct?

FORMULA NAME

(a) [Co(NH₃)₄(OH₂)I]SO₄ tetraammineaquaiodocobalt(III) sulfate

(b) K[Cr(NH ₃) ₂ Cl ₄]	potassium diamminetetrachlorochromate(III)
(c) $[Mn(CN)_5]^2$ -	pentacyanomanganate(II) ion
(d) [Ni(CO) ₄]	tetracarbonylnickel(0)
(e) Ca[PtCl ₄]	calcium tetrachloroplatinate(II)

9.

What is the oxidation number of the central metal atom in the coordination compound

[Pt(NH₃)₃Cl]Cl?

- (a) -1
- (b) 0
- (c) +1
- (d) + 2
- (e) +3

10.

(Valance Bond Theory) Magnetic measurements indicate that $[Co(OH_2)_6]^{2+}$ has 3 unpaired electrons. Therefore, the hybridization of the metal's orbitals in $[Co(OH_2)_6]^{2+}$ is:

- (a) sp^3
- (b) sp^2d
- (c) dsp^2
- (d) sp^3d^2
- (e) d^2sp^3

11.

Which one of the following complexes can exhibit geometrical isomerism?

- (a) $[Pt(NH_3)_2Cl_2]$ (square planar)
- (b) $[Zn(NH_3)_2Cl_2]$ (tetrahedral)
- (c) $[Cu(NH_3)_4]^{2+}$ (square planar)
- (d) $[Co(NH_3)_5Cl]^{2+}$ (octahedral)
- (e) [Cu(CN)₂]⁻ (linear)

12.

A molecule that cannot be superimposed on its mirror image is said to exhibit which of the following?

- (a) geometrical isomerism
- (b) optical isomerism
- (c) linkage isomerism
- (d) reactive isomerism
- (e) coordination isomerism

13.

In which one of the following species does the transition metal ion have d^3 electronic configuration?

- (a) $[Cr(NH_3)_6]^{3+}$
- (b) $[Co(OH_2)_6]^{2+}$
- (c) $[CoF_6]^{3-1}$
- (d) $[Fe(CN)_6]^{3-1}$
- (e) $[Ni(OH_2)_6]^{2+}$

14.

(Valence Bond Theory) The coordination complex, $[Cu(OH_2)_6]^{2+}$ has one unpaired electron. Which of the following statements are **true**?

- (1) The complex is octahedral.
- (2) The complex is an outer orbital complex.
- (3) The complex is d^2sp^3 hybridized.
- (4) The complex is diamagnetic.
- (5) The coordination number is 6.
- (a) 1, 4

- (b) 1, 2, 5
- (c) 2, 3, 5
- (d) 2, 3
- (e) 4, 5

15.

(Crystal Field Theory) Which one of the following statements is **FALSE**? (a) In an octahedral crystal field, the d electrons on a metal ion occupy the e_g set of orbitals before they occupy the t_{2g} set of orbitals.

(b) Diamagnetic metal ions cannot have an odd number of electrons.

(c) Low spin complexes can be paramagnetic.

(d) In high spin octahedral complexes, Δ_{oct} is less than the electron pairing energy, and is relatively very small.

(e) Low spin complexes contain strong field ligands.

16.

(Crystal Field Theory) When the valence d orbitals of the central metal ion are split in energy in an octahedral ligand field, which orbitals are raised **least** in energy?

- (a) d_{xy} and $d_{x^2-y^2}$
- (b) d_{xy} , d_{xz} and d_{yz}
- (c) d_{xz} and d_{yz}
- (d) d_{xz} , d_{yz} and d_{z2}
- (e) $d_x 2 y^2$ and $d_z 2$

17.

(Crystal Field Theory) How many unpaired electrons are there in a strong field iron(II) octahedral complex?

- (a) 0
- (b) 1
- (c) 2
- (d) 4
- (e) 6

18.

(Crystal Field Theory) Consider the complex ion $[Mn(OH_2)_6]^{2+}$ with 5 unpaired electrons. Which response includes all the following statements that are **true**, and no false statements?

I. It is diamagnetic.

II. It is a low spin complex.

III. The metal ion is a d^5 ion.

IV. The ligands are weak field ligands.

V. It is octahedral.

- (a) I, II
- (b) III, IV, V

(c) I, IV (d) II, V (e) III, IV

19.

(Crystal Field Theory) Consider the violet-colored compound, $[Cr(OH_2)_6]Cl_3$ and the yellow compound, $[Cr(NH_3)_6]Cl_3$. Which of the following statements is false?

(a) Both chromium metal ions are paramagnetic with 3 unpaired electrons.

(b) Δ_{oct} for $[Cr(NH_3)_6]^{3+}$ is calculated directly from the energy of yellow light.

(c) Δ_{oct} for $[Cr(OH_2)_6]^{3+}$ is less than Δ_{oct} for $[Cr(NH_3)_6]^{3+}$.

(d) A solution of $[Cr(OH_2)_6]Cl_3$ transmits light with an approximate wavelength range of 4000 - 4200 angstroms.

(e) The two complexes absorb their complementary colors.

20.

(Crystal Field Theory) Strong field ligands such as CN⁻:

- (a) usually produce high spin complexes and small crystal field splittings.
- (b) usually produce low spin complexes and small crystal field splittings.
- (c) usually produce low spin complexes and high crystal field splittings.
- (d) usually produce high spin complexes and high crystal field splittings.
- (e) cannot form low spin complexes.

Answers:

1. (d) 2. (d) 3. (d) 4. (b) 5. (b) 6. (b) 7. (d) 8. (c) 9. (d) 10. (d) 11. (a) 12. (b) 13. (a) 14. (b) 15. (a) 16. (b) 17. (a) 18. (b) 19. (b) 20. (c)