UV Spectroscopy

1)	The Ultraviolet Region (UV) of electromagnetic spectrum extend from :				
	a) 0 to 200 nm	b) 4 to 400 nm	c) 40 to 4000 nm	d) 400 to 800 nm	
2)	Which of the fol	llowing is an Auxoch	rome ?		
	a) -N=O	b) -NO ₂	c) -N=N-	d) -OH	
3)	Which of the fol	llowing is Chromoph	ore ?		
	a) -SO ₃ H	b) -NO2	c) -NH ₂	d) -OH	
4)	Certain groups	which produce the a	colour are called as	5	
	a) Auxochrome	b) Chromophore	c) A dye	d) None of these	
5)	Certain groups which are not produces the colour themselves but are able to intensify the colour when present with chromophore is called as				
	a) Auxochrome	b) Chromophore	c) A dye	d) None of these	
6)	A transition in w called as tr	rhich bonding σ elec ransitions.	trons get excited to	o anti bonding σ^* orbital is	
	a) σ-σ* b)	n-σ* c) π-π*	d) n- *		
7)	A transition in which one electron of a lone pair get excited to anti bonding σ^* orbital is called as transitions.				
	α) σ-σ* b)	n-σ* C) π-π*	d) n- *		
8)	A transition in w called as	hich bonding π elec transitions.	tron get excited to	anti bonding π^* orbital is	
	a) σ-σ* b)	n-σ* c) π-π*	d) n- *		
9)	A transition in which one electron of a lone pair get excited (promoted) to antibonding π^* orbital is called as n- π^* transition.				
	a) σ-σ* b)	n-σ* c) π-π*	d) n-π*		
10)	The base value	of a,β unsaturated k	etone is		
	a) 215 nm	b) 200 nm	c) 180 nm	d) 250 nm	
11)	The base value of heteroannular diene is				
	a) 210 nm	b) 214 nm	c) 180 nm	d) 253 nm	
12)	The base value	of homoannular die	ne is		
	a) 210 nm	b) 214 nm	c) 180 nm	d) 253 nm	
13)	The shift of absc effect.	prption maximum (λ _r	_{nax}) to the higher wo	ave length is called	

a) Hyperchromic b) Hypsochromic c) Bathochromic d) Hypochromic

14)	The shift of absorption maximum (λ_{max}) to the shorter wave length is called	
	effect.	

a) Hyperchromic b) Hypsochromic c) Bathochromic d) Hypochromic

 An effect which leads to an increase in absorption of intensity (ε_{max}) is called -----shift.

a) Hyperchromic b) Hypsochromic c) Bathochromic d) Hypochromic

16) An effect which leads to a decrease in absorption of intensity (ϵ_{max}) is called ------ shift.

a) Hyperchromic b) Hypsochromic c) Bathochromic d) Hypochromic

17) Any isolated co-valently bounded group that shows characteristic absorption in UV region is called

a) Chromophore b) Auxochrome c) Nanochrome d) None of these

18) A functional group which does not absorb radiation above 200 nm but when attached to chromophore causes λ_{max} at higher wave length is called ------

a) Chromophore **b) Auxochrome** c) Nanochrome d) None of these

```
19) The equation of log \frac{Io}{I} = E.C.I. is an expression of :
```

- a) Beer-Lambert's law b) Hooks law c) Beer law d) Lambert's law
- 20) The distance between two adjacent crust or trough in a particular wave is called -----
 - a) Frequency b) Wave number c) Wave length d) None of these
- 21) A number of waves passes through a point in one second is called -----
 - a) Frequency b) Wave number c) Wave length d) None of these
- 22) Reciprocal of wave length is called -----
 - a) Frequency b) Wave number c) Wave length d) None of these
- 23) A compound containing chromophore is called -----
 - a) Achromogen b) A peptide c) A dye d) Auxochrome
- 24) UV spectroscopy is used for detection of ------ in organic compounds
 - a) functional group b) conjugation c) protons d) None of these
- 25) In methane molecule, ------ transitions occur.
 - **a) σ-σ*** b) n-σ* c) π-π* d) n-π*
- 26) In methyl alcohol molecule, n- σ^* transitions occur at ----
 - a) 100 nm b) 150 nm **c) 174 nm** d) 300 nm
- 27) In 1,3-butadiene molecule, π-π* transitions occur at ---- a) 100 nm
 b) 217 nm
 c) 150 nm
 d) 300 nm
- 28) In acetone molecule, n- π^* transitions occur at -----

IR Spectroscopy

1)	IR spectroscopy is used t	for detection of	in known	and unknown co	ompounds.		
	a) functional group	b) congugation	c) protons	d) none of thes	e		
2)	Movement of both aton known as stretch	ns with respect to c ning vibrations.	central atom	in the same dire	ection is		
	a) asymmetric	b) symmetric	c) twisting	d) wagging			
3)	Movement of one of the atom approaches to central atom while other away from it, known as stretching vibration.						
	a) asymmetric	b) symmetric	c) twisting	d) wagging			
4)	Two atoms approach to each other with change in their bond angle, known as bending vibration.						
	a) Rocking	b) Scissoring	c) twisting	d) wagging			
5)	Movement of two atom	s in the same direc	tion, known	as bending	g vibrations.		
	a) Rocking	b) Scissoring	c) twisting	d) wagging			
6) Two atoms move up and down with respect to plane of the central as bending vibration.					om, known		
	a) Rocking	b) Scissoring	c) twisting	d) wagging			
7) One of the atom move up and other moves down to the plane with re- central atom, known as bending vibration.				spect to			
	a) Rocking	b) Scissoring	c) twisting	d) wagging			
8)) The ordinary (important) IR-region extend from						
	a) 4000- 667 cm ⁻¹	b) 1-10 cm ⁻¹	c) 200-400 r	nm d) 5000-5	50 cm-1		
9)	The >C=O group of ketone shows IR-absorption in the range						
	a) 3650-3440 cm ⁻¹	b) 1760-1690 cm ⁻¹	с) 2280-213	0 cm ⁻¹ d) 1320-1	180 cm ⁻¹		
10)	The -OH group of alcoho	ol shows IR-absorpt	ion in the rar	nge			
	a) 3600-3200 cm ⁻¹	b) 1760-1690 cm ⁻¹	c) 2280-213	0 cm ⁻¹ d) 1320-1	180 cm ⁻¹		
11)	The Ar-H group of aroma	atic compound sho	ows IR-absorp	otion in the rang	e		
	a) 3650-3440 cm ⁻¹	b) 1760-1690 cm ⁻¹	c) 3100-300	0 cm⁻¹ d) 1320-1	180 cm ⁻¹		
12)	The N-H group of amine	s shows IR-absorptio	on in the ran	ge			
	a) 3500-3300 cm ⁻¹	b) 1760-1690 cm ⁻¹	c) 2280-213	0 cm ⁻¹ d) 1320-1	180 cm ⁻¹		
13)	The -C=C- group of aror	natic compound sl	hows IR-abso	orption in the ran	ige		
	a) 3500-3300 cm ⁻¹	b) 1600-1450 cm ⁻¹	с) 2280-213	0 cm ⁻¹ d) 1320-1	180 cm ⁻¹		

14)	The -C≡C- group of alkene shows IR-absorption in the range							
	a) 3500-3300 cm ⁻¹	b) 1760-1690 cm ⁻¹	c) 2200-2100 cm ⁻¹	d) 1320-1180 cm ⁻¹				
15)	The -C≡N- group of cyanide shows IR-absorption in the range							
	a) 3500-3300 cm ⁻¹	b) 1760-1690 cm ⁻¹	c) 2280-2200 cm ⁻¹	d) 1320-1180 cm ⁻¹				
16)	In IR-spectroscopy Finger print region extend from							
	a) 1400-667 cm ⁻¹	b) 1760-1690 cm ⁻¹	c) 3100-3000 cm ⁻¹	d) 1320-1180 cm ⁻¹				
17)	In IR-spectroscopy Functional group region extend from							
	a) 1400-667 cm ⁻¹	b) 4000-1400 cm ⁻¹	^I c) 3100-3000 cm ⁻¹	d) 1320-1180 cm ⁻¹				
18)	In alcohols, C-O stretchi	ng of primary alcol	nol appears at					
	a) 1200 cm ⁻¹	b) 1150 cm ⁻¹	c) 1100 cm ⁻¹	d) 1050 cm ⁻¹				
19)	In alcohols, C-O stretching of secondary alcohol appears at							
	a) 1200 cm ⁻¹	b) 1150 cm ⁻¹	c) 1100 cm ⁻¹	d) 1050 cm ⁻¹				
20)	In alcohols, C-O stretching of tertiary alcohol appears at							
	a) 1200 cm ⁻¹	b) 1150 cm ⁻¹	c) 1100 cm ⁻¹	d) 1050 cm ⁻¹				
21)	In phenols, C-O stretching appears at							
	a) 1200 cm ⁻¹	b) 1150 cm ⁻¹	c) 1100 cm ⁻¹	d) 1050 cm ⁻¹				
22)	In ethers, C-O stretching appears at							
	a) 1200 cm ⁻¹	b) 1150 cm ⁻¹	c) 1100 cm ⁻¹	d) 1070 cm ⁻¹				

PMR Spectroscopy

1)	Wha	What is the range of chemical shift in PMR spectrum ?							
	a) 0	to 20 ppm	b) 0	to 40 ppm	c) 0 to 10 ppm		d) 0 to 30 ppm		
2)	The number of PMR signals in Diethyl ether is :								
	a)	2	b)	3	C)	4	d)	1	
3)	The number of PMR signals in ethylamine is								
	a)	2	b)	3	C)	4	d)	1	
4)	The r	number of I	PMR sig	nals in Mesity	/lene is	\$			
	a)	4	b)	3	c)	2	d)	1	
5)	The r	number of I	PMR sig	nals in Aceto	one is -				
	a)	4	b)	3	C)	2	d)	1	
6)	The r	number of I	PMR sig	nals in Cyclo	butan	e is			
	a)	4	b)	3	C)	2	d)	1	
7)	The r	number of I	PMR sig	nals in Metho	anol is				
	a)	4	b)	3	c)	2	d)	1	
8)	The r	number of I	PMR sig	nals in Ethyl k	oenzer	ne is			
	a)	4	b)	3	C)	2	d)	1	
9)	In PMR spectroscopy, when acetylene molecule placed in magnetic field then the proton shows effect.						agnetic field then the		
	a) Sh	nilded	b) De	eshilded	c) Bo	c) Both a & b		d) None of these	
10)	In PMR spectroscopy, when benzene molecule placed in magnetic field then th proton shows effect.					ignetic field then the			
	a) Sh	nilded	b) De	eshilded	c) Both a & b		d) None of these		
11)	The s	plitting of P	MR sigr	al is called c	1S	coupling	g.		
	a) sp	oin-spin	b) tv	visted	c) tv	vinted	d) No	one of these	
12)	A set of protons with identical environment is called								
	a) Ec	quivalent pr	otons		b) No	on equivaler	nt proto	protons	
	c) SI	nilded proto	ons		d) Deshilded protons				
13) A set of protons with different environment is called									
	a) Ec	quivalent pr	otons		b) N	on equivaler	nt proto	ons	
	c) SI	c) Shilded protons			d) De	a) Deshilded protons			

6

14)	Which is an example of equivalent protons ?						
	a) CH3-OH	b) CH ₃ -CO-CH ₃	c) CH ₃ CH ₂ Br	d) CH ₃ CH ₂ NH ₂			
15)	Which is an example of non equivalent protons ?						
	a) CH3-OH	b) CH ₃ -CO-CH ₃	c) CH ₃ CH ₃	d) CH4			
16)	6) Which is an example of equivalent protons ?						
	a) CH3-OH	b) CH ₃ -CO-CH ₃	c) CH ₃ CH ₂ Br	d) CH ₃ CH ₂ NH ₂			
17)	In PMR spectrosco	opy, shielded proton	s present in				
	a) Benzene	b) Acetylene	c) Acetone	d) None of these			
18)	In PMR spectrosco	opy, deshielded prot	ons present in				
	a) Benzene	b) Acetylene	c) Acetone	d) None of these			
19)	Splitting of PMR sig	gnal is called					
	a) chemical shift	b) TMS	c) spin-spin splitting	d) None of these			
20)	In PMR spectroscopy, CH_3 - CH_2 -Br molecule, signal of $-CH_2$ protons shows						
	a) singlet	b) quartet	c) doublet	d) None of these			
21)	In PMR spectroscopy, CH ₃ -CH ₂ -Br molecule, signal of –CH ₃ protons shows						
	a) triplet	b) quartet	c) doublet	d) None of these			
22)	The distance betv as	veen the centers of ⁻	two adjacent bands in c	a multiplate is called			
	a) chemical shift	b) coupling consta	nt c) TMS	d) None of these			
23)	TMS is called as						
	a) chemical shift	b) coupling consta	nt c) Tetramethyl silane	d) None of these			

Amino acids, Peptides and Molecular rearrangements Amino acids are the biologically important compounds containing an ----- and ----1) -- functional group in the same compound. b) –NH₂ & -NO₂ c) –OH & -COOH a) –NH₂ & -COOH d) -OH & -NH₂ Amino acid containing one amino group and one carboxylic acid group is called 2) as ----- amino acids. a) Acidic b) Basic c) Neutral d) None of these Amino acid containing two amino groups and one carboxylic acid group is called 3) as ----- amino acids. a) Acidic b) Basic c) Neutral d) None of these 4) Amino acid containing one amino group and two carboxylic acid groups is called as ----- amino acids. a) Acidic b) Basic c) Neutral d) None of these 5) When a-chloro acetic acid react with NH₃ gives -----a) Glycine b) Glycol c) Glycerol d) None of these 6) When potassium phthalimide react with ethyl chloroacetate gives N-substituted phthalimide which on acidic hydrolysis with water gives -----a) Glycine b) Glycol c) Glycerol d) None of these 7) When potassium phthalimide react with ethyl chloroacetate gives N-substituted phthalimide which on acidic hydrolysis with water gives glycine. This reaction is known as ----b) Gabriel phthalimide synthesis a) Streckers synthesis c) Kolbes synthesis d) None of these 8) The isoelectric point of PH at which an amino acid exists completely as a ------a) Zwitter ion b) Halo acids c) Fatty acid d) None of these O -C–NH— bond is called as----- peptides A molecule containing 9) a) amino acid b) peptides d) None of these c) Fatty acid 10) Two amino acids molecules on condensation with elimination of water gives ---a) dipeptide b) tripeptides c) polypeptide d) None of these 11) Three amino acids molecules on condensation with elimination of water gives ---a) dipeptide b) tripeptides c) polypeptide d) None of these 12) Many no. of amino acids molecules on condensation with elimination of water gives ----

a) dipeptide b) tripeptides c) polypeptide d) None of these

- 13) Which of the following is an example of polypeptide ?a) amino acidb) Glycylalanine c) proteind) None of these
- 14) Acid catalyzed rearrangement of pinacol to pinacolone with elimination of water is known as ------ rearrangement.

a) pinacol to pinacolone
b) Favroskii
c) PhotoFries
d) Stevens
15) Base catalyzed rearrangement of a-haloketones or cyclopropanones to carboxylic acids or their derivatives known as ----- rearrangement.
a) pinacol to pinacolone
b) Favroskii
c) PhotoFries
d) Stevens

- 16) Phenyl acetate on irradiated with UV light, the acyl group migrates from the phenolic oxygen to ortho or para position on the ring to form o/p-hydroxy acetophenone this is called as ----- rearrangement.
 - a) pinacol to pinacolone b) Favroskii c) Photo Fries d) Stevens
- 17) Quaternary ammonium salts and sulfonium salts in presence of a strong base converted into the corresponding amines or sulfides ------ rearrangement.
 a) pinacol to pinacolone
 b) Favroskii
 c) PhotoFries
 d) Stevens

9