A.V. Education Society's <u>DEGLOOR COLLEGE, DEGLOOR</u> (MCQ) Class - B.Sc. I st Year Subject – Physical Chemistry

Choose the correct answer of the following 1. The value of log 1 is a) 0 b) 1 c) 2 d) 3 2. The value of log (uX v) is _____ **b)** $\log u + \log v$ c) $\log u - \log v$ d) $\log u / \log v$ a) log u X log v 3. The value of log (u / v) is _____ a) log u X log v b) $\log u + \log v$ c) $\log u - \log v$ d) $\log u / \log v$ 4. What is the value of log $(x)^n$? a) $\log x + \log n$ b) $\log (x / n)$ c) n $\log x$ d) $\log x - \log n$ 5. The value of sin (x + y) is _____ a) sin x . cos y – cos x . sin y b) sin x. sin y + $\cos x$. $\cos y$ c) sin x . sin y $-\cos x$. cos y d) sin x . cos y + cos x . sin y 6. The value of d/dx (xⁿ) -----a) nx^{n+1} b) nx^{n-1} c) nx^{n} d) nx^{n + 2} The equation of straight line passing through origin is a) y = mx + c b) y = mxc) $y - y_1 = m (x - x_1)$ d) x/a + y/b = 18. The intercept form of the line is given by equation b) 2x + 3y = 1 c) x + 2y = 2 d) x/a + y/b = 1a) y = mx + c9. The value of d/dx (log x) is _____ b) x² c) 1 / x d) x / 2 a) x 10. The value of ∫dx is..... a) x b) x^2 c) 1 / x d) x / 2 11. Which of the following is correct a) pH + pOH = 7 b) pH - pOH = 0 c) pH + pOH = 14 d) b) pH - pOH = 14 12. Slope of any line parallel to x-axis is a) 1 b) -1 c) 0 d) Not defined 13. The equation $y - y_1 = m(x - x_1)$, $m \in R$ represents the line a) parallel to x-axis b) parallel to y-axis c) parallel to the line x - y = 0d) parallel to the line x + y = 014. The probability of sure event is b) 2 c) 1/2 a) 1 d) zero 15. The probability of an impossible event is a) 1 b) 2 c) 1/2 d) zero 16. The value of $\log x + \log y$ is a) $\log (x X y)$ b) $\log (x / y)$ c) $\log (x + y)$ d) $\log (x - y)$ 17. The value of log x – log y is _____

a) $\log (x X y)$ b) $\log (x / y)$ c) $\log (x + y)$ d) $\log (x - y)$ 18. The value of d/dx (sin x) is d) – sin x a) tan x b) cot x c) cos x 19. The value of d/dx (cos x) is b) $\cos x$ c) $\tan x$ d) – $\sin x$ a) sin x 20. The value of d/dx (tan x) is a) sec² x b) cot x c) sec² x d) cosec x 21. The value of $\int 1/x \, dx$ is ______ a) – x b) x^2 c) log x d) - log x 22. The straight line, whose gradients are m₁, m₂ respectively are parallel if a) $m_1 = 0$ b) $m_2 = 0$ c) $m_1 m_2 = 0$ d) $m_1 = m_2$ 23. The straight lines $y = m_1 x \& y = m_2 x$ are perpendicular to each other if a) $m_1 = m_2$ b) $m_1 \cdot m_2 = -1$ c) $m_1 = -m_2$ d) $m_1 = 1/m_2$ 24. The graph of linear equation is always in the form of a) circle b) straight line c) sphere d) curve. 25. The value of log₈₁ (243) is _____ c) 7/4 a) 6/4 b) 5/4 d) 9/4 26. The value of d/dx (e^x) is c) x/2 d) x² a) e^x b) x 27. d/dx (a^x) is equal to _____ b) x log a c) a^x log a d) none of these a) log a^x 28. The value of sin x dx is a) cos x **b)** $-\cos x$ c) tan x d) cot x 29. The value of $\int x^7$. dx is ______ a) $x^7 / 7$ **b)** $x^8 / 8$ c) x^6 d) x^8 30. The characteristic of log_{10} (0.0062) is c) – 3 a) 4 b) – 4 d) 1 31. log₁₀ (10000) is equal to a) 1 b) 2 c) 3 d) 4 32. for 1 mole of gas, the ideal gas equation is _____ a) PV = 1/2 RT b) PV = RTc) PV = 2RT d) PV = 3/2 RT 33. The unit of gas constant 'R' is _____ c) cal K ⁻¹mol⁻¹ a) Joule K ⁻¹mol⁻¹ b) erg K⁻¹mol⁻¹ d) All of these 34. The average kinetic energy of gas molecule is a) Directly proportional to its absolute temperature b) Inversely proportional to its absolute temperature c) Equal to square root of its absolute temperature d) Directly proportional to square root of its absolute temperature

35. The RMS velocity is given by relation

a) Crms = $\sqrt{2RT/M}$ b) Crms = $\sqrt{3RT/M}$ c) Crms = $\sqrt{RT/M}$ d) Crms = $\sqrt{8RT/M}$
36. The average velocity of a gas molecule is given by relation
a) $Vav = \sqrt{RT/\pi M}$ b) $Vav = \sqrt{2RT/\pi M}$ c) $Vav = \sqrt{3RT/\pi M}$ d) $Vav = \sqrt{8RT/\pi}$
37. The most probable velocity of a gas molecule is given by relation
a) Vmp = b) Vmp = $\sqrt{2RT/M}$ c) Vmp = $\sqrt{3RT/M}$ d) Vmp = $\sqrt{3RT/M}$
38. The compressibility factor 'z' is given by relation
a) $Z = PV/RT$ b) $Z = PV/2RT$ c) $Z = PV/RT^2$ d) $Z = 2PV/2RT$
39. The real gases shows nearly ideal behavior at
a) low pressure & low temperature b) low pressure & high temperature
c) high pressure & high temperature d) high pressure & low temperature
40. The critical temperature of CO ₂ gas is
a) 21° b) 25° c) 31° d) 50°
41. The kinetic gas equation is given by relation is
a) PV = 1/3. mnu ² b) PV = 1/2. mnu ² c) PV = 3/2. mnu ² d) PV = 2/3. mnu ²
42. The unit of Vanderwaal's costant 'a' is
a) atm lit mol ⁻¹ b) atm lit ⁻¹ mol ⁻¹ c) atm lit ² mol ⁻² d) atm lit ⁻¹ mol ²
43. The unit of Vanderwaal's costant 'b' is
a) lit mol ⁻¹ b) lit mol ² c) lit mol ⁻² d) lit 2 mol ⁻¹
44. The compressibility factor 'Z' an ideal gas
a) zero b) less than one c) greater than one d) equal to one
45. A gas can be inqueired at
c) high pressure & high temperature d) high pressure & high temperature
46 The correct value of V_{c} is given by term
a) $3b$ b) $a/27b^2$ c) $8a/27Rb$ d) none of these
47. The correct value of ' T_c ' is given by term
a) 3b b) a/27b ² c) 8a/27Rb d) none of these
48. The correct value of 'Pc' is given by term
a) 3b b) a/27b ² c) 8a/27Rb d) none of these
49. The value of gas constant 'R' is
a) 0.821JK ⁻¹ mol ⁻¹ b) 8.314 JK ⁻¹ mol ⁻¹
c) 8.314 lit atm K $^{-1}$ mol $^{-1}$ d) None of these
50. The Root mean square velocity is given by relation
a) Crms = $\sqrt{3PV/M}$ b) Crms = $\sqrt{3RT/M}$ c) Crms = $\sqrt{3P/D}$ d) All of these
51. Exclude volume is times the actual volume of molecule
a) two b) three c) four d) half

52. The pressure 'P' in the ideal gas equation is replaced by

a) (p + an²/v²) b) (p - an²/v²) c) (p + 2n²/v²) d) (p + n²/v²)

53) Which one of the following is correct Relation?
a) $V_c = 3b$ b) $P_c = a/27Rb^2$ c) $T_c = 8a/27Rb^2$ d) None of these
54. In Vanderwaal's equation, the term which accounts for intermolecular forces is
a) RT b) V – b c) p + a/V ² d) (RT) ⁻¹
55. most of the molecules of any gas posses
a) Average velocity b) most probable velocity
c) mean square velocity d) Normal velocity
56. On increasing temperature, most probable velocity of gas
a) Increases b) decreases c) remains constant d) None of these
57. In Vanderwaal's equations of state for a non ideal gas, the net force of attractions
among the molecule is given by
a) an^2/v^2 b) $(p - an^2/v^2)$ c) $(p + an^2/v^2)$ d) $- an^2/v^2)$
58. In (lit atm k^{-1} mol ⁻¹), the numerical value of 'R', the gas constant is
a) 0.821 b) 0.0821 c) 0.00821 d) 0.000821
59. For 1 mole of gas the kinetic energy is given by
a) E = 1/2 RT b) E = 3/2 RT c) E = 5/2 RT d) 7/2 RT
60. Which of the following is an ideal gas?
a) H ₂ b) N ₂ c) CO ₂ d) None of these
61. The value of Average velocity is given by
a) 0.9213 x RMS velocity b) 0.8165 x RMS velocity
c) 0.9213 x most probable velocity d) None of these
62. The elements of symmetry are
a) plane of symmetry b) Axis of symmetry
c) center of symmetry d) All of these
63. The Bragg's equation for diffraction of x-rays is
a) $n\lambda = 2d \sin \Theta$ b) $n\lambda = 2d^2 \sin \Theta$ c) $n\lambda = 2d \sin^2 \Theta$ d) $n\lambda = d \sin \Theta$
64. The number of atoms per unit cell in a simple cubic , fcc & bcc are
a) 1, 2, 4 b) 1, 4, 2 c) 4, 2, 1 d) 2, 4, 1
65. The number of atoms in unit cell of body centered cubic lattice is
a) 0 b) 1 c) 2 d) 3
66. The number of atoms in unit cell of face centered cubic lattice is
a) 2 b) 4 c) 6 d) 8
67. NaCl is an example of
a) simple cubic lattice b) face centered cubic lattice
c) body centered cubic lattice d) None of these
68. KCI is an example of
a) simple cubic lattice b) face centered cubic lattice
c) body centered cubic lattice d) None of these
69. In Bragg's equation $n\lambda$ = 2d sinΘ, 'n' represents
a) the number of moles b) Principle quantum number

c) Avogadro' nu	mber	d) Order	of reflection		
70. NaCl is an exam	nple of				
a) covalent solic	b) molec	ular solid	c) Ionic solid	d) metallic solid	
71. If there are 4 ato	oms in unit cell	in cubic systen	n, it is an example o	f	
a) simple cubic	lattice	b) face	centered cubic lat	tice	
c) body centered	d cubic lattice	d) None	e of these		
72. The ratio of spa	cings in case of	sodium chlori	de (NaCl) crystal is		
a) 1 : 0.704 : 1.′	136	b) 0.705 : 1.5	0 : 1.135		
c) 1 : 0.504 : 0.7	75	d) None of the	se		
73. The relative spacing for the unit cell of face centered cubic lattice are					
a) a/2 : a/ $\sqrt{2}$: a/	$2\sqrt{3}$	b) a/2 : $a/\sqrt{2}$: a/√3		
c) a/2 : a/2√2 : a	a/√3	d) None of the	ese		
74. The ratio of spa	cings in case of	potassium ch	loride (KCl) crystal is	S	
a) 1 : 0.704 : 1.1	36	b) 1:0.707:	0.575		
c) 0.707 : 0.571	: 1	d) None of the	se		
75. A crystalline sol	id have				
a) sharp edges	b) flat faces	c) definit	e geometrical form	d) All of these	
76. If the particles a	re at corners as	s well as at the	center of cube, is c	called as	
a) simple cubic	lattice	b) face	centered cubic lattic	e	
c) body centered	ed cubic lattice	e d) None	e of these		
77. The value of lo	gm–lognis				
a) log (m X n)	b) $\log \frac{m}{n}$	c) log	(m + n) d) log	g (m – n)	
78. Value of ${}^{11}P_5$ is	;				
a) 540	b) 504	c) 5040	d) no	one of these	
79. Value of 9C_3 is					
a) 48	b) 254	c) 80	d) 84	1	
80. Slope of the line	e passing throug	gh the points (2	2, 5) and (−4, −4) is		
a) - 3	b) 3	c) $\frac{3}{2}$	d) –	3/2	
81. find pH whose p	OH is 6.9				
a) 7.1	b) 7	c) 6.9	d) 7.	2	
82. pH is defined as	;				
a) – log [H ⁺]	b) + log [H ⁺] c) + lo	g[OH ⁻] d) –	log [0H ⁻]	
83. pOH is defined a	as				
a) – log [H ⁺]	b) + log [H ⁺] c) + lo	g[OH ⁻] d) -	log [0H ⁻]	
84. Permutation is -		of a number o	f objects taking som	e or all at a time.	
a) selection	b) rejection	c) arran	gement d) no	one of these	
85. Combination is		of a number o	of objects taking som	ne or all at a time.	
a) selection	b) rejection	c) arran	gement d) no	one of these	

86. The compre	ssibility factor 'z' of an id	deal gas is	
a) zero	b) less than one	c) greater than	one d) equal to one
89. Critical Tem	perature means above t	this temperature at an	y pressure, any gas can be
a) Liquefied	b)Not liquefied	c) solidified d)	All of these
90. Excluded vo	olume is ti	mes the actual volume	e of molecule
a) two b) t	hree c) four d) h	alf	
91. RMS velocit	y is directly proportional	to	
a) √T	b) T ²	c) T	d) $\frac{1}{\sqrt{T}}$
92. A plane can	be expressed as $\frac{1}{2}a$:	$\frac{1}{3}a:\frac{2}{3}a$ & Miller indic	es are
a) (3 6 4)	b)(4 3 6)	c)(4 6 3)	d) (3 2 6)
93. Critical cons	stant of water Vc is 0.49	Lit/mol, the Vander w	aal constant b is
a) 0.153 Lit/	mol b) 0.173 Lit/n	nol c) 0.163 Lit	mol d) 0.163 Lit/mol
94. Pc is 70 atm	n, b is 0.0458 Lit/mol &	vander waal's constar	nta is
a) 3.969 atn	n Lit²/mol² b) 3.969 at	m /Lit ² mol ² c) 3.76 atı	m Lit ² /mol ² d) 3.76 atm/Lit ² mol ²
95. The Vander	waal's constant a = 0.7	751atm Lit²/mol² &	b = 0.0226 Lit/mol, Tc is
a) 120 °C	b) 115 °C	c) 120 K	d) 115 K
96. Isotherm me	eans		
a) P-T curve	es at constant V	b) V-T curves at c	onstant P
c) P- V curv	ves at constant T	d) None of these	
97. RMS velocit	y of oxygen is 1500 m/s	ec, Temperature is	
(M = 32 x)	10^{-3} kg, R = 8.314 J/k	<td></td>	
a) 2886 K	b) 2886 °C	c) 2856 ł	۲ d) 2856°C
98. RMS velocit	y of ammonia gas at 50	°C is	
(M = 17 x)	10^{-3} kg, R = 8.314 J/k	<td></td>	
a) 6.588 x 1	0 ² m/sec b) 6.588 x 10	² cm/sec c) 6.884 x	10 ² cm/sec d) 6.884 x 10² m/sec
99. Value of ⁹ P	3 is		
a) 540	b) 504	c) 5040	d) none of these
100. Value of ¹²	² C ₈ is		
a) 459	b) 954	c) 485	d) 495
101. $\frac{da^x}{da^x}$ is equ			
dx dx	al to		
a) a ^x log x	al tob) x ^a log a	c) a ^x log a	d) none of these
a) a ^x log x 102. pH is 7.05	b) x ^a log a , [H ⁺] is	c) a ^x log a	d) none of these
a) a ^x log x 102. pH is 7.05 a) 8.913 x 1	b) x ^a log a b, [H ⁺] is L 0⁻⁸mol/ Lit b) 8.83 x	c) a^x log a 10 ⁻⁸ mol/ Lit c) 8.9	d) none of these $13 \ge 10^{-7}$ mol/ Lit d) None of these
a) a ^x log x 102. pH is 7.05 a) 8.913 x 1 103. The pheno Called	b) x ^a log a b) x ^a log a f, [H ⁺] is LO ⁻⁸ mol/ Lit b) 8.83 x omenon of concentration	c) $\mathbf{a}^{\mathbf{x}} \log \mathbf{a}$ 10^{-8} mol/ Lit c) 8.9 of molecules of a gas	d) none of these $13 \ge 10^{-7}$ mol/ Lit d) None of these s or liquid at a solid surface is

104. Adsorbate is that substance

a) which concentrate on the surface		b) where adsorption takes place		
c) which evaporates from the surface		d) None of these		
105.	Increase in	of the adsorbent increas	es the total amount of	the gas adsorbed.
i	a) density	b) volume	c) surface area	d) surface tension
106.	the critical	temperature of the gas, t	he more readily will it t	be adsorbed.
i	a) lower	b) Higher	c) intermediate	d) None of these
107.	The process of adsorp	otion is		
a	a) exothermic		b) endothei	rmic
C	c) sometimes exotherr	nic, sometimes endothern	nic d) None of	these
108.	Physical adsorption is	a process.		
a	a) reversible	b) irreversible	c) exothermic	d) None of these
109.	Physical adsorption of	ccurs rapidly at	temperature.	
a	a) low	b) Higher	c) absolute zero	d) None of these
110.	Physical adsorption g	enerally with ir	creasing temperature.	
a	a) increases		b) decreases	
c	c) sometimes increase	s, sometimes decreases	d) None of the	se
111.	Chemical adsorption g	generally with	increasing temperature	Э.
a	a) increases		b) decreases	
C	c) sometimes increase	s, sometimes decreases	d) remains the	esame
112.	The relationship betwo	een equilibrium pressure	of a gas and its amour	nt adsorbed on the
:	solid adsorbent at con	stant temperature is calle	d	
8	a) chemisorption	b) adsorption isobars	c) adsorption isothe	rms d) None of these
113.	Freundlich isotherm is	not applicable at		
a				
-	a) room temperature	b) low pressure	c) 273 K	d) high pressure
114.	a) room temperature In physical adsorption	b) low pressure the gas molecules are he	c) 273 K eld to the solid surface	d) high pressure by
114. a	a) room temperature In physical adsorption a) hydrogen bond	b) low pressure the gas molecules are he b) pi bond c) sig	c) 273 K eld to the solid surface gma bond d) van d	d) high pressure by der Waal's forces
114. a 115.	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho	 b) low pressure the gas molecules are he b) pi bond c) signals lds at low pressure but fa 	c) 273 K eld to the solid surface gma bond d) vand ils at	d) high pressure by der Waal's forces
114. a 115. a	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho a) room temperature	 b) low pressure the gas molecules are he b) pi bond c) signation <li style="text-align: right;">c) signation <li style="text-a</td><td>c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure</td><td>d) high pressure by der Waal's forces d) 273 K</td>	c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure	d) high pressure by der Waal's forces d) 273 K
114. 115. 2 116.	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho a) room temperature the rate desorption Ro	 b) low pressure the gas molecules are he b) pi bond c) signed lds at low pressure but fation b) low pressure d is given by 	c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure	d) high pressure by der Waal's forces d) 273 K
114. a 115. a 116. a	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho a) room temperature the rate desorption Ro a) R_d = K_d θ	 b) low pressure the gas molecules are he b) pi bond c) sig lds at low pressure but fa b) low pressure d is given by b) R_d = K_d / θ 	c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure c) R _d = K _d θ ²	d) high pressure by der Waal's forces d) 273 K d) R _d = K _d / θ ²
114. a 115. a 116. a 116. a 117.	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho a) room temperature the rate desorption Ro a) $R_d = K_d \theta$ Langmuir while derivir	b) low pressure the gas molecules are he b) pi bond c) sig lds at low pressure but fa b) low pressure d is given by b) $R_d = K_d / \theta$	c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure c) R _d = K _d θ ² id not make the follow	d) high pressure by der Waal's forces d) 273 K d) $R_d = K_d / \theta^2$ ing assumption
114. a 115. a 116. a 116. a 117. a	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho a) room temperature the rate desorption Ro a) $R_d = K_d \theta$ Langmuir while derivir a) the layer of the gas	b) low pressure the gas molecules are he b) pi bond c) sig lds at low pressure but fa b) low pressure d is given by b) $R_d = K_d I \theta$ ng adsorption isotherms d adsorbed on the solid sur	c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure c) $R_d = K_d \theta^2$ id not make the follow face is one molecule t	d) high pressure by der Waal's forces d) 273 K d) $R_d = K_d I \theta^2$ ing assumption hick.
114. a 115. a 116. a 117. a t	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho a) room temperature the rate desorption Ro a) $R_d = K_d \theta$ Langmuir while derivir a) the layer of the gas b) the adsorbed layer i	b) low pressure the gas molecules are he b) pi bond c) sig lds at low pressure but fa b) low pressure d is given by b) $R_d = K_d / \theta$ ng adsorption isotherms d adsorbed on the solid sur s uniform	c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure c) $R_d = K_d \theta^2$ id not make the follow face is one molecule t	d) high pressure by der Waal's forces d) 273 K d) $R_d = K_d / \theta^2$ ing assumption hick.
114. a 115. a 116. a 117. a t c	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho a) room temperature the rate desorption Ro a) $\mathbf{R}_{d} = \mathbf{K}_{d} \mathbf{\theta}$ Langmuir while derivir a) the layer of the gas b) the adsorbed layer i c) there is no attractior	 b) low pressure the gas molecules are here b) pi bond c) signals at low pressure but fation by b) low pressure d is given by b) R_d = K_d / θ ng adsorption isotherms detected on the solid sure s uniform a between adjacent molected 	c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure c) $R_d = K_d \theta^2$ id not make the follow face is one molecule to cules.	d) high pressure by der Waal's forces d) 273 K d) $R_d = K_d / \theta^2$ ing assumption hick.
114. a 115. a 116. a 117. a k c c	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho a) room temperature the rate desorption Ro a) $R_d = K_d \theta$ Langmuir while derivir a) the layer of the gas b) the adsorbed layer i c) there is no attraction d) there is attraction	b) low pressure the gas molecules are he b) pi bond c) sig lds at low pressure but fa b) low pressure d is given by b) $R_d = K_d I \theta$ ng adsorption isotherms d adsorbed on the solid sur s uniform h between adjacent molecule	c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure c) $R_d = K_d \theta^2$ id not make the follow face is one molecule t	d) high pressure byder Waal's forces d) 273 K d) $R_d = K_d / \theta^2$ ing assumption hick.
114. a 115. a 116. a 117. a t c 117. a 117. a t c 118.	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho a) room temperature the rate desorption Ro a) $R_d = K_d \theta$ Langmuir while derivir a) the layer of the gas b) the adsorbed layer i c) there is no attraction d) there is attraction which of the following	b) low pressure the gas molecules are he b) pi bond c) sig lds at low pressure but fa b) low pressure d is given by b) $R_d = K_d I \theta$ ng adsorption isotherms d adsorbed on the solid sur is uniform h between adjacent molecules between adjacent molecules	c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure c) $R_d = K_d \theta^2$ id not make the follow face is one molecule to cules.	d) high pressure byder Waal's forces d) 273 K d) $R_d = K_d / \theta^2$ ing assumption hick.
114. a 115. a 116. 117. a t 0 0 0 118. a	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho a) room temperature the rate desorption Ro a) $R_d = K_d \theta$ Langmuir while derivir a) the layer of the gas b) the adsorbed layer i c) there is no attraction d) there is attraction which of the following a) chemisorptions is ca	b) low pressure the gas molecules are he b) pi bond c) sig lds at low pressure but fa b) low pressure d is given by b) $R_d = K_d I \theta$ ng adsorption isotherms d adsorbed on the solid sur is uniform h between adjacent molecu- between adjacent molecu- is incorrect?	c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure c) $R_d = K_d \theta^2$ id not make the follow face is one molecule to sules.	d) high pressure byder Waal's forces d) 273 K d) $R_d = K_d / \theta^2$ ing assumption hick.
114. 115. 115. 116. 117. a b c 117. a b c 118. a b c t t t t t t t t t t t t t	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho a) room temperature the rate desorption Ro a) $\mathbf{R}_d = \mathbf{K}_d \mathbf{\theta}$ Langmuir while derivir a) the layer of the gas b) the adsorbed layer i c) there is no attraction d) there is attraction which of the following a) chemisorptions is ca b) chemisorptions is ca	b) low pressure the gas molecules are he b) pi bond c) sig lds at low pressure but fa b) low pressure d is given by b) $R_d = K_d / \theta$ ng adsorption isotherms d adsorbed on the solid sur is uniform h between adjacent molecu- between adjacent molecu- is incorrect? aused by bond formation becific in nature	c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure c) $R_d = K_d \theta^2$ id not make the follow face is one molecule to sules.	d) high pressure byder Waal's forces d) 273 K d) $R_d = K_d I \theta^2$ ing assumption hick.
114. a 115. a 116. a 117. a t c 118. a t t c	a) room temperature In physical adsorption a) hydrogen bond Langmuir isotherm ho a) room temperature the rate desorption Ro a) $\mathbf{R}_d = \mathbf{K}_d \mathbf{\theta}$ Langmuir while derivir a) the layer of the gas b) the adsorbed layer i c) there is no attraction d) there is attraction which of the following a) chemisorptions is ca b) chemisorption is re	b) low pressure b) pi bond c) signate at b) pi bond c) signate at b) pi bond c) signate at b) pi bond c) signate d is given by b) Rd = Kd / θ adsorbed on the solid sure adsorbed on the solid sure between adjacent molect between adjacent molect is incorrect? aused by bond formation becific in nature eversible	c) 273 K eld to the solid surface gma bond d) vand ils at c) high pressure c) $R_d = K_d \theta^2$ id not make the follow face is one molecule to sules.	d) high pressure byder Waal's forces d) 273 K d) $R_d = K_d / \theta^2$ ing assumption hick.

119. which of the following is incorrect statement?

a) physical adsorption is irreversible in nature

- b) physical adsorption involves multi-molecular layers.
- c) In physical adsorption the energy evolves is small
- d) physical adsorption is caused vander Waal's forces
- 120. which of the following is incorrect?
 - a) physical adsorption is reversible in nature
 - b) In chemical adsorption the ΔH is large
 - c) In physical adsorption the ΔH is small

d) chemisorption is reversible in nature