DEGLOOR COLLEGE, DEGLOOR

(MCQ)
Class - B.Sc. $\left.\right|^{\text {st }}$ Year \quad Subject - Physical Chemistry

Choose the correct answer of the following

1. The value of $\log 1$ is \qquad
a) 0
b) 1
c) 2
d) 3
2. The value of $\log (u X v)$ is \qquad
a) $\log u X \log v$
b) $\log u+\log v$
c) $\log u-\log v$
d) $\log u / \log v$
3. The value of $\log (u / v)$ is \qquad
a) $\log u X \log v$
b) $\log u+\log v$
c) $\log u-\log v$
d) $\log u / \log v$
4. What is the value of $\log (x)^{n}$?
a) $\log x+\log n$
b) $\log (x / n)$
c) $n \log x$
d) $\log x-\log n$
5. The value of $\sin (x+y)$ is \qquad
a) $\sin x \cdot \cos y-\cos x \cdot \sin y$
b) $\sin x \cdot \sin y+\cos x \cdot \cos y$
c) $\sin x \cdot \sin y-\cos x \cdot \cos y$
d) $\sin x \cdot \cos y+\cos x \cdot \sin y$
6. The value of $d / d x\left(x^{n}\right)$ \qquad
a) $n x^{n+1}$
b) $n x^{n-1}$
c) $n x^{n}$
d) $n x^{n+2}$
7. The equation of straight line passing through origin is \qquad
a) $y=m x+c$
b) $\mathbf{y}=\mathbf{m x}$
c) $y-y_{1}=m\left(x-x_{1}\right)$
d) $x / a+y / b=1$
8. The intercept form of the line is given by equation \qquad
a) $y=m x+c$
b) $2 x+3 y=1$
c) $x+2 y=2$
d) $x / a+y / b=1$
9. The value of $d / d x(\log x)$ is \qquad
a) x
b) x^{2}
c) $1 / x$
d) $x / 2$
10. The value of $\int d x$ is \qquad
a) x
b) x^{2}
C) $1 / x$
d) $x / 2$
11. Which of the following is correct \qquad
a) $\mathrm{pH}+\mathrm{pOH}=7$
b) $\mathrm{pH}-\mathrm{pOH}=0$
c) $\mathrm{pH}+\mathrm{pOH}=14$
d) b) $\mathrm{pH}-\mathrm{pOH}=14$
12. Slope of any line parallel to x-axis is \qquad
a) 1
b) -1
c) 0
d) Not defined
13. The equation $y-y_{1}=m\left(x-x_{1}\right), m \in R$ represents the line \qquad
a) parallel to x-axis
b) parallel to y-axis
c) parallel to the line $x-y=0$
d) parallel to the line $x+y=0$
14. The probability of sure event is \qquad
a) 1
b) 2
c) $1 / 2$
d) zero
15. The probability of an impossible event is \qquad
a) 1
b) 2
c) $1 / 2$
d) zero
16. The value of $\log x+\log y$ is \qquad
a) $\log (x X y)$
b) $\log (x / y)$
c) $\log (x+y)$
d) $\log (x-y)$
17. The value of $\log x-\log y$ is \qquad
a) $\log (x X y)$
b) $\log (x / y)$
c) $\log (x+y)$
d) $\log (x-y)$
18. The value of $d / d x$. $(\sin x)$ is \qquad
a) $\tan x$
b) $\cot x$
c) $\cos x$
d) $-\sin x$
19. The value of $d / d x .(\cos x)$ is \qquad
a) $\sin x$
b) $\cos x$
c) $\tan x$
d) $-\boldsymbol{\operatorname { s i n }} x$
20. The value of $d / d x .(\tan x)$ is \qquad
a) $\sec ^{2} x$
b) $\cot x$
c) $\sec ^{2} x$
d) $\operatorname{cosec} x$
21. The value of $\int 1 / x . d x$ is \qquad
a) $-x$
b) x^{2}
c) $\log x$
d) $-\log x$
22. The straight line, whose gradients are m_{1}, m_{2} respectively are parallel if \qquad
a) $m_{1}=0$
b) $m_{2}=0$
c) $m_{1} \cdot m_{2}=0$
d) $\mathrm{m}_{1}=\mathrm{m}_{2}$
23. The straight lines $y=m_{1} x \& y=m_{2} x$ are perpendicular to each other if \qquad
a) $m_{1}=m_{2}$
b) $m_{1} \cdot m_{2}=-1$
c) $m_{1}=-m_{2}$
d) $m_{1}=1 / m_{2}$
24. The graph of linear equation is always in the form of \qquad
a) circle
b) straight line
c) sphere
d) curve.
25. The value of $\log _{81}(243)$ is \qquad
a) $6 / 4$
b) $5 / 4$
c) $7 / 4$
d) $9 / 4$
26. The value of $d / d x .\left(e^{x}\right)$ is \qquad
a) e^{x}
b) x
c) $x / 2$
d) x^{2}
27. $d / d x$. $\left(a^{x}\right)$ is equal to
a) $\log a^{x}$
b) $x \log a$
c) $a^{x} \log a$
d) none of these
28. The value of $\int \sin x . d x$ is \qquad
a) $\cos x$
b) $-\boldsymbol{\operatorname { c o s }} x$
c) $\tan x$
d) $\cot x$
29. The value of $\int x^{7} \cdot d x$ is \qquad
a) $x^{7} / 7$
b) $x^{8} / 8$
c) x^{6}
d) x^{8}
30. The characteristic of $\log _{10}(0.0062)$ is
a) 4
b) -4
c) -3
d) 1
31. $\log _{10}(10000)$ is equal to \qquad
a) 1
b) 2
c) 3
d) 4
32. for 1 mole of gas, the ideal gas equation is \qquad
a) $P V=1 / 2 R T$
b) $\mathrm{PV}=\mathrm{RT}$
c) $P V=2 R T$
d) $P V=3 / 2 R T$
33. The unit of gas constant ' R ' is \qquad
a) Joule $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
b) $\mathrm{erg} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
c) $\mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
d) All of these
34. The average kinetic energy of gas molecule is \qquad
a) Directly proportional to its absolute temperature
b) Inversely proportional to its absolute temperature
c) Equal to square root of its absolute temperature
d) Directly proportional to square root of its absolute temperature
35. The RMS velocity is given by relation \qquad
a) $\mathrm{Crms}=\sqrt{2 \mathrm{RT} / \mathrm{M}}$
b) $\mathrm{Crms}=\sqrt{3 \mathrm{RT} / \mathrm{M}}$
c) $\mathrm{Crms}=\sqrt{\mathrm{RT} / \mathrm{M}}$
d) $\mathrm{Crms}=\sqrt{8 \mathrm{RT} / \mathrm{M}}$
36. The average velocity of a gas molecule is given by relation
a) $\operatorname{Vav}=\sqrt{R T / \pi M}$
b) $V a v=\sqrt{2 R T / \pi M}$
c) $\operatorname{Vav}=\sqrt{3 R T / \pi M}$
d) $\mathrm{Vav}=\sqrt{8 R T / \pi M}$
37. The most probable velocity of a gas molecule is given by relation \qquad
a) $V m p=$
b) $\mathbf{V m p}=\sqrt{2 R T / M}$
c) $V m p=\sqrt{3 R T / M}$
d) $V m p=\sqrt{3 R T / M}$
38. The compressibility factor ' z ' is given by relation \qquad
a) $\mathbf{Z}=P V / R T$
b) $Z=P V / 2 R T$
c) $Z=P V / R T^{2}$
d) $Z=2 P V / 2 R T$
39. The real gases shows nearly ideal behavior at \qquad
a) low pressure \& low temperature
b) low pressure \& high temperature
c) high pressure \& high temperature
d) high pressure \& low temperature
40. The critical temperature of CO_{2} gas is \qquad
a) 21°
b) 25°
c) 31°
d) 50°
41. The kinetic gas equation is given by relation is \qquad
a) $\mathrm{PV}=1 / 3 . \mathrm{mnu}^{2}$
b) $P V=1 / 2 . m n u^{2}$
c) $P V=3 / 2 . m n u^{2}$
d) $P V=2 / 3 \cdot m n u^{2}$
42. The unit of Vanderwaal's costant ' a ' is \qquad
a) atm lit mol^{-1}
b) $\mathrm{atm} \mathrm{lit}^{-1} \mathrm{~mol}^{-1}$
c) $\mathrm{atm} \mathrm{lit}^{2} \mathrm{~mol}^{-2}$
d) $\mathrm{atm} \mathrm{lit}^{-1} \mathrm{~mol}^{2}$
43. The unit of Vanderwaal's costant ' b ' is \qquad
a) lit mol^{-1}
b) lit mol^{2}
c) lit mol^{-2}
d) $\mathrm{lit}^{2} \mathrm{~mol}^{-1}$
44. The compressibility factor ' z ' an ideal gas \qquad
a) zero
b) less than one
c) greater than one
d) equal to one
45. A gas can be liquefied at \qquad
a) low pressure \& low temperature
b) low pressure \& high temperature
c) high pressure \& high temperature
d) high pressure \& low temperature
46. The correct value of ' V_{C} ' is given by term \qquad
a) $\mathbf{3 b}$
b) $a / 27 b^{2}$
c) $8 a / 27 R b$
d) none of these
47. The correct value of ' T_{c} ' is given by term \qquad
a) $3 b$
b) $a / 27 b^{2}$
c) $8 \mathrm{a} / 27 \mathrm{Rb}$
d) none of these
48. The correct value of ' Pc_{c} ' is given by term
a) $3 b$
b) $\mathbf{a} / \mathbf{2 7} \mathbf{b}^{\mathbf{2}}$
c) $8 a / 27 \mathrm{Rb}$
d) none of these
49. The value of gas constant ' R ' is
a) $0.821 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
b) $8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
c) 8.314 lit atm $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
d) None of these
50. The Root mean square velocity is given by relation \qquad
a) $\mathrm{Crms}=\sqrt{3 \mathrm{PV} / \mathrm{M}}$
b) $\mathrm{Crms}=\sqrt{3 \mathrm{RT} / \mathrm{M}}$
c) $\mathrm{Crms}=\sqrt{3 \mathrm{P} / \mathrm{D}}$
d) All of these
51. Exclude volume is \qquad times the actual volume of molecule
a) two
b) three
c) four
d) half
52. The pressure ' P ' in the ideal gas equation is replaced by
a) $\left(p+a n^{2} / v^{2}\right)$
b) $\left(p-a n^{2} / v^{2}\right)$
c) $\left(p+2 n^{2} / v^{2}\right)$
d) $\left(p+n^{2} / v^{2}\right)$
53) Which one of the following is correct Relation?
a) $V_{c}=3 b$
b) $\mathrm{P}_{\mathrm{C}}=\mathrm{a} / 27 \mathrm{Rb}^{2}$
c) $T_{c}=8 a / 27 R b^{2}$
d) None of these
54. In Vanderwaal's equation, the term which accounts for intermolecular forces is \qquad
a) RT
b) $V-b$
c) $\mathbf{p + a} / \mathbf{V}^{2}$
d) $(R T)^{-1}$
55. most of the molecules of any gas posses \qquad
a) Average velocity
b) most probable velocity
c) mean square velocity
d) Normal velocity
56. On increasing temperature, most probable velocity of gas \qquad
a) Increases
b) decreases
c) remains constant
d) None of these
57. In Vanderwaal's equations of state for a non ideal gas, the net force of attractions among the molecule is given by \qquad
a) $\mathrm{an}^{2} / \mathbf{v}^{2}$
b) $\left(p-a n^{2} / v^{2}\right)$
c) $\left(p+a n^{2} / v^{2}\right)$
d) $-a n^{2} / v^{2}$)
58. In (lit atm $\mathrm{k}^{-1} \mathrm{~mol}^{-1}$), the numerical value of ' R^{\prime}, the gas constant is \qquad
a) 0.821
b) 0.0821
c) 0.00821
d) 0.000821
59. For 1 mole of gas the kinetic energy is given by \qquad
a) $E=1 / 2 R T$
b) $E=3 / 2 R T$
c) $E=5 / 2 R T$
d) $7 / 2 \mathrm{RT}$
60. Which of the following is an ideal gas?
a) H_{2}
b) N_{2}
c) CO_{2}
d) None of these
61. The value of Average velocity is given by \qquad
a) $0.9213 \times$ RMS velocity
b) $0.8165 \times$ RMS velocity
c) $0.9213 \times$ most probable velocity
d) None of these
62. The elements of symmetry are \qquad
a) plane of symmetry
b) Axis of symmetry
c) center of symmetry
d) All of these
63. The Bragg's equation for diffraction of x-rays is \qquad
a) $\mathbf{n \lambda}=\mathbf{2 d} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$
b) $n \lambda=2 d^{2} \sin \Theta$
c) $n \lambda=2 d \sin ^{2} \theta$
d) $n \lambda=d \sin \Theta$
64. The number of atoms per unit cell in a simple cubic , fcc \& bcc are \qquad
a) 1, 2, 4
b) 1, 4, 2
c) $4,2,1$
d) $2,4,1$
65. The number of atoms in unit cell of body centered cubic lattice is \qquad
a) 0
b) 1
c) 2
d) 3
66. The number of atoms in unit cell of face centered cubic lattice is \qquad
a) 2
b) 4
c) 6
d) 8
67. NaCl is an example of \qquad
a) simple cubic lattice
b) face centered cubic lattice
c) body centered cubic lattice
d) None of these
68. KCl is an example of
a) simple cubic lattice
b) face centered cubic lattice
c) body centered cubic lattice
d) None of these
69. In Bragg's equation $n \lambda=2 d \sin \Theta$, ' n ' represents
a) the number of moles
b) Principle quantum number
c) Avogadro' number
d) Order of reflection
70. NaCl is an example of \qquad
a) covalent solid
b) molecular solid
c) Ionic solid
d) metallic solid
71. If there are 4 atoms in unit cell in cubic system, it is an example of \qquad
a) simple cubic lattice
b) face centered cubic lattice
c) body centered cubic lattice
d) None of these
72. The ratio of spacings in case of sodium chloride (NaCl) crystal is \qquad
a) $1: 0.704: 1.136$
b) $0.705: 1.50: 1.135$
c) $1: 0.504: 0.75$
d) None of these
73. The relative spacing for the unit cell of face centered cubic lattice are \qquad
a) $a / 2: a / \sqrt{2}: a / 2 \sqrt{3}$
b) $a / 2: a / \sqrt{2}: a / \sqrt{3}$
c) $a / 2: a / 2 \sqrt{ } 2: a / \sqrt{ } 3$
d) None of these
74. The ratio of spacings in case of potassium chloride (KCl) crystal is \qquad
a) $1: 0.704: 1.136$
b) $1: 0.707: 0.575$
c) $0.707: 0.571: 1$
d) None of these
75. A crystalline solid have \qquad
a) sharp edges
b) flat faces
c) definite geometrical form
d) All of these
76. If the particles are at corners as well as at the center of cube , is called as \qquad
a) simple cubic lattice
b) face centered cubic lattice
c) body centered cubic lattice
d) None of these
77. The value of $\log m-\log n$ is \qquad
a) $\log (\mathrm{mXn})$
b) $\log \frac{m}{n}$
c) $\log (m+n)$
d) $\log (m-n)$
78. Value of ${ }^{11} \mathrm{P}_{5}$ is \qquad
a) 540
b) 504
c) 5040
d) none of these
79. Value of ${ }^{9} \mathrm{C}_{3}$ is
a) 48
b) 254
c) 80
d) 84
80. Slope of the line passing through the points $(2,5)$ and $(-4,-4)$ is \qquad
a) -3
b) 3
c) $\frac{3}{2}$
d) $-\frac{3}{2}$
81. find pH whose pOH is 6.9
a) 7.1
b) 7
c) 6.9
d) 7.2
82. pH is defined as
a) $-\log \left[\mathrm{H}^{+}\right]$
b) $+\log \left[\mathrm{H}^{+}\right]$
c) $+\log \left[\mathrm{OH}^{-}\right]$
d) $-\log \left[\mathrm{OH}^{-}\right]$
83. pOH is defined as
a) $-\log \left[\mathrm{H}^{+}\right]$
b) $+\log \left[\mathrm{H}^{+}\right]$
c) $+\log \left[\mathrm{OH}^{-}\right]$
d) $-\log \left[\mathrm{OH}^{-}\right]$
84. Permutation is \qquad of a number of objects taking some or all at a time.
a) selection
b) rejection
c) arrangement
d) none of these
85. Combination is \qquad of a number of objects taking some or all at a time.
a) selection
b) rejection
c) arrangement
d) none of these
86. The compressibility factor ' z ' of an ideal gas is
a) zero
b) less than one
c) greater than one
d) equal to one
87. Critical Temperature means above this temperature at any pressure, any gas can be \qquad
a) Liquefied
b)Not liquefied
c) solidified
d) All of these
88. Excluded volume is times the actual volume of molecule
a) two
b) three
c) four
d) half
89. RMS velocity is directly proportional to \qquad
a) $\sqrt{\mathrm{T}}$
b) T^{2}
c) T
d) $\frac{1}{\sqrt{T}}$
90. A plane can be expressed as $\frac{1}{2} a: \frac{1}{3} a: \frac{2}{3} a$ \& Miller indices are \qquad
a) (364)
b) $\left(\begin{array}{lll}4 & 3 & 6\end{array}\right)$
c) $\left(\begin{array}{ll}4 & 3\end{array}\right)$
d) ($3 \quad 26$)
91. Critical constant of water Vc is $0.49 \mathrm{Lit} / \mathrm{mol}$, the Vander waal constant b is \qquad
a) $0.153 \mathrm{Lit} / \mathrm{mol}$
b) $0.173 \mathrm{Lit} / \mathrm{mol}$
c) 0.163 Lit mol
d) $0.163 \mathrm{Lit} / \mathrm{mol}$
92. Pc is $70 \mathrm{~atm}, \mathrm{~b}$ is $0.0458 \mathrm{Lit} / \mathrm{mol} \&$ vander waal's constant a is \qquad
a) $3.969 \mathrm{~atm} \mathrm{Lit}^{2} / \mathrm{mol}^{2}$
b) $3.969 \mathrm{~atm} / \mathrm{Lit}^{2} \mathrm{~mol}^{2}$
c) $3.76{\mathrm{~atm} \mathrm{Lit}^{2} / \mathrm{mol}^{2}}^{2}$
d) $3.76 \mathrm{~atm} / \mathrm{Lit}^{2} \mathrm{~mol}^{2}$
93. The Vander waal's constant $a=0.751 \mathrm{~atm} \mathrm{Lit}^{2} / \mathrm{mol}^{2} \quad \& \quad b=0.0226 \mathrm{Lit} / \mathrm{mol}$, Tc is \qquad
a) $120^{\circ} \mathrm{C}$
b) $115^{\circ} \mathrm{C}$
c) 120 K
d) 115 K
94. Isotherm means \qquad
a) P-T curves at constant V
b) V-T curves at constant P
c) P- V curves at constant T
d) None of these
95. RMS velocity of oxygen is $1500 \mathrm{~m} / \mathrm{sec}$, Temperature is \qquad ($\mathrm{M}=32 \times 10^{-3} \mathrm{~kg}, \quad \mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$)
a) 2886 K
b) $2886{ }^{\circ} \mathrm{C}$
c) 2856 K
d) $2856^{\circ} \mathrm{C}$
96. RMS velocity of ammonia gas at $50^{\circ} \mathrm{C}$ is \qquad ($\mathrm{M}=17 \times 10^{-3} \mathrm{~kg}, \quad \mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$)
a) $6.588 \times 10^{2} \mathrm{~m} / \mathrm{sec}$
b) $6.588 \times 10^{2} \mathrm{~cm} / \mathrm{sec}$
c) $6.884 \times 10^{2} \mathrm{~cm} / \mathrm{sec}$
d) $6.884 \times 10^{2} \mathrm{~m} / \mathrm{sec}$
97. Value of ${ }^{9} P_{3}$ is \qquad
a) 540
b) 504
c) 5040
d) none of these
98. Value of ${ }^{12} \mathrm{C}_{8}$ is \qquad
a) 459
b) 954
c) 485
d) 495
99. $\frac{d a^{x}}{d x}$ is equal to \qquad
a) $a^{x} \log x$
b) $x^{a} \log a$
c) $a^{x} \log a$
d) none of these
100. pH is $7.05,\left[\mathrm{H}^{+}\right]$is \qquad
a) $8.913 \times 10^{-8} \mathrm{~mol} / \mathrm{Lit}$
b) $8.83 \times 10^{-8} \mathrm{~mol} / \mathrm{Lit}$
c) $8.913 \times 10^{-7} \mathrm{~mol} /$ Lit d) None of these
101. The phenomenon of concentration of molecules of a gas or liquid at a solid surface is Called \qquad
a) absorption
b) adsorption
c) catalysis
d) None of these
102. Adsorbate is that substance \qquad
a) which concentrate on the surface
b) where adsorption takes place
c) which evaporates from the surface
d) None of these
103. Increase in \qquad of the adsorbent increases the total amount of the gas adsorbed.
a) density
b) volume
c) surface area
d) surface tension
104. \qquad the critical temperature of the gas, the more readily will it be adsorbed.
a) lower
b) Higher
c) intermediate
d) None of these
105. The process of adsorption is \qquad
a) exothermic
b) endothermic
c) sometimes exothermic, sometimes endothermic
d) None of these
106. Physical adsorption is a \qquad process.
a) reversible
b) irreversible
c) exothermic
d) None of these
107. Physical adsorption occurs rapidly at \qquad temperature.
a) low
b) Higher
c) absolute zero
d) None of these
108. Physical adsorption generally \qquad with increasing temperature.
a) increases
b) decreases
c) sometimes increases, sometimes decreases
d) None of these
109. Chemical adsorption generally \qquad with increasing temperature.
a) increases
b) decreases
c) sometimes increases, sometimes decreases
d) remains the same
110. The relationship between equilibrium pressure of a gas and its amount adsorbed on the solid adsorbent at constant temperature is called \qquad
a) chemisorption
b) adsorption isobars
c) adsorption isotherms
d) None of these
111. Freundlich isotherm is not applicable at \qquad
a) room temperature
b) low pressure
c) 273 K
d) high pressure
112. In physical adsorption the gas molecules are held to the solid surface by \qquad
a) hydrogen bond
b) pi bond
c) sigma bond
d) vander Waal's forces
113. Langmuir isotherm holds at low pressure but fails at \qquad
a) room temperature
b) low pressure
c) high pressure
d) 273 K
114. the rate desorption Rd is given by
a) $R_{d}=K_{d} \boldsymbol{\theta}$
b) $R_{d}=K_{d} / \theta$
c) $R_{d}=K_{d} \theta^{2}$
d) $R_{d}=K_{d} / \theta^{2}$
115. Langmuir while deriving adsorption isotherms did not make the following assumption
a) the layer of the gas adsorbed on the solid surface is one molecule thick.
b) the adsorbed layer is uniform
c) there is no attraction between adjacent molecules.
d) there is attraction between adjacent molecules
116. which of the following is incorrect?
a) chemisorptions is caused by bond formation
b) chemisorptions is specific in nature
c) chemisorption is reversible
d) chemisorptions increases with increase in temperature.
117. which of the following is incorrect statement?
a) physical adsorption is irreversible in nature
b) physical adsorption involves multi-molecular layers.
c) In physical adsorption the energy evolves is small
d) physical adsorption is caused vander Waal's forces
118. which of the following is incorrect?
a) physical adsorption is reversible in nature
b) In chemical adsorption the $\Delta \mathrm{H}$ is large
c) In physical adsorption the $\Delta \mathrm{H}$ is small
d) chemisorption is reversible in nature
