DEGLOOR COLLEGE, DEGLOOR
Class - B.Sc. I Year (sem-II) Subject - Physical Chemistry-IV (MCQ)

1. Atomic Structure

1. A subatomic particle	a which has unit negative	<i>r</i> e charge and negligible r	nass is called as
a) proton	b) electron	c) neutron	d) Hydrogen atom
2. A subatomic particle	which has unit positive	e charge and one unit ma	ss is called as
a) proton	b) electron	e) neutron	d) Hydrogen atom
3. A subatomic particle		e and one unit mass is ca	
a) proton	b) electron	c) neutron	d) Hydrogen atom
4. In Hydrogen spectra	a, Lyman series is obtai	ined when electron jumps	from higher energy
level to			
a) 1 st energy leve	b) 2 nd energy leve	l c) 3 rd energy level	d) 4 th energy level
5. In Hydrogen spectra	a, Balmer series is obta	ined when electron jumps	s from higher energy
level to			
a) 1 st energy level	b) 2 nd energy lev	el c) 3 rd energy level	d) 4 th energy level
6. In Hydrogen spectra	a, Paschen series is obt	tained when electron jum	ps from higher energy
level to			
a) 1 st energy level	b) 2 nd energy leve	c) 3 rd energy level	d) 4 th energy level
7. In Hydrogen spectra	a, Brackett series is obta	ained when electron jump	os from higher energy
level to			
a) 1 st energy level	b) 2 nd energy leve	l c) 3 rd energy level	d) 4 th energy level
8. In Hydrogen spectra	a, Pfund series is obtair	ned when electron jumps	from higher energy
level to			
a) 1 st energy level	b) 3 rd energy level	c) 5 th energy level	d) 4 th energy level
9. In Hydrogen spectra	a, Lyman series lies in		
a) ultra-violet regi	on b) visible region	c) Infrared region	d) None of these
10. In Hydrogen spect	ra, Balmer series lies in)	
a) ultra-violet region	n b) visible region	c) Infrared region	d) None of these
11. In Hydrogen spect	ra, Paschen series lies	in	
a) ultra-violet region	n b) visible region	c) Infrared region	d) None of these
12. In Hydrogen spect	ra, Brackett series lies i	in	
a) ultra-violet region	n b) visible region	c) Infrared region	d) None of these
13. In Hydrogen spect	ra, Pfund series lies in -		
a) ultra-violet region	n b) visible region	c) Infrared region	d) None of these
14. The maximum nun	nber of electrons in an o	orbit is	

a) n²	b) 2 n	c) 2 n²	d) 2 n + 1		
15. The maximum nur	nbers of electrons in	a subshell is given by			
a) 2n²	b) 2 (I + 1)	c) 2 l +1	d) 2 (2 l + 1)		
16. The radius of Bohi	orbit is proportional	to			
a) n²	b) n	c) 2 n ²	d) $\frac{1}{n^2}$		
17. The energy of an e	electron in an orbit is	proportional to			
a) n²	b) n	c) 2 n ²	d) $\frac{1}{n^2}$		
18. Cathode rays are	deflected by				
a) Electric field	b) Magnitc field	c) Electric & Magnitc field	d) None of these.		
19 is elec	trically neutral particl	e carrying one unit mass.			
a) proton	b) electron	c) neutron	d) Hydrogen atom		
20. The atomic number	er of an element is eq	ual to the number of	in the nucleus of		
atom					
a) proton	b) electron	c) neutron & proton	d) neutron		
21. In Bohr's atomic m	nodel, the angular mo	mentum of an electron is give	n by		
a) mvr $=\frac{h}{2\pi}$	b) mvr = $\frac{\text{nh}}{4\pi}$	c) mvr = $\frac{h}{2n\pi}$	d) mvr $=\frac{nh}{2\pi}$		
22. According to Bohr	s atomic model, the r	radius of orbit is given by			
a) r = $\frac{nh^2}{4\pi^2 me^2}$	b) $r = \frac{n^2 h^2}{4\pi^2 me^2}$	c) $r = \frac{n^2 h^2}{4\pi^2 me}$	d) $r = \frac{n^2 h^2}{4\pi me^2}$		
23. The radius of first Bohr orbit is 0.529 A°, the radius of second Bohr orbit is					
a) 1 x 0.529 A°	b) 2 x 0.529 A°	c) 3 x 0.529 A°	d) 4 x 0.529 A°		
24. The energy of an e	electron in n th orbit is	s given by			
a) $E = -\frac{2\pi^2 me^4}{n^2h^2}$	b) E = $-\frac{4\pi^2 \text{ me}^4}{n^2 h^2}$	c) $E = -\frac{2\pi^2 me^2}{n^2h^2}$	d) $E = -\frac{4\pi^2 me^2}{n^2h^2}$		
25. Principle quantum	number (n) represen	ts			
a) average size of the electron cloud b) average energy of the electron					
c) average distanc	e of electron from nu	cleus d) all of these			
26. The shape of orbit	al occupied by the ele	ectron is given by			
a) Principle quantu	ım number b) <i>i</i>	Azimuthal quantum number			
c) Magnetic quant	um number d) :	Spin quantum number			
27. "No two electrons	in an atom can have	the same set of all four identic	cal quantum numbers"		
	of				
a) Aufbau principle	e b) Hund's rule	c) Pauli's exclusion princip	le d) None of these		
28. The distribution of	electrons among the	orbitals of a subshell is given	by		
a) Aufbau principle	e b) Hund's rule	c) Pauli's exclusion principle	d) None of these		
29. Two electrons occ	upying the same orbi	tals have different			
a) Principle quanto	ım number b) A	Azimuthal quantum number			

	c) Magnetic quantum	number	d) Spin qu	antum number	
30.	"The electrons in vario	ous orbitals are	e arranged	according to their inc	reasing order of
	energy" is statement	of			
	a) Aufbau principle	b) Hund's rul	e c) Pau	li's exclusion princip	le d) None of these
31.	In hydrogen spectrum	, the series wh	nich falls in	ultra-violet region is	
	a) Balmer series	b) Lyman se	ries c) F	Paschen series	d) Brackett series
32.	The total number of M	agnetic quant	um number	for a given value of	Azimuthal quantum is
	a) 2 l	b) 2 I — 1	c)	2 l + 1	d) 2 l + 2
33.	The energy of an elec	tron in Bohr's	atom	as we move	e away from the nucleus.
	a) Increases	b) decreases	c) l	Remains the same	d) None of these
34.	The quantum number	which accoun	ts for the sp	olitting ofspectral line	s is
	a) Principle quantum r	number	b) Azimutha	al quantum number	
	c) Magnetic quantum	n number	d) Spin qua	intum number	
35.	The angular momentu	m of the elect	ron is define	ed by the quantum n	umber
	a) n	b) I	c) m	d) s	
36.	The Principle quantum number (n) is related to the				
	a) Orbital angular mor	nentum	b) sl	hape and size of orb	ital
	c) Orientation of orbita	al	d) A	verage size of orbi	tal
37.	The energy of an elec	tron in Bohr's	first orbit is	- 13.6 eV. The end	ergy of the n = 3 level
	corresponds to				
	a) - 4.53 eV	b) 2.26 eV	,	c) - 1.51 eV	d) None of these
38	. The two electrons in t	he first shell w	vill differ in t	he values of	
	a) n	b) I	c) m	d) s	
39.	If the value of Azimuth	nal quantum nu	umber I = 2,	then the value of m	agnetic quantum numbers
	(m) are				
	a) 2	b) 3	c) 4	d) 5	

2. Liquid State

1. The unit of surface tension is				
a) dyne cm ⁻¹	b) dyne cm	c) dyne ⁻¹ cm	d) dyne ⁻¹ cm ⁻¹	
2. With the rise in temperature, the surface tension of liquid is				
a) Increases	b) decreases	c) remains same	d) None of these	
3. The formula used f	or the determination of	of surface tension of liqu	id using number drop method	
(stalgnometer) is				
a) $\frac{\gamma_1}{\gamma_2} = \frac{n_{1 d_1}}{n_{2 d_2}}$	b) $\frac{\gamma_1}{\gamma_2} = \frac{n_1 d_2}{n_2 d_1}$	c) $\frac{\gamma_1}{\gamma_2} = \frac{n_2 d_1}{n_1 d_2}$	$d) \frac{\gamma_1}{\gamma_2} = \frac{n_{2 d_2}}{n_{1 d_1}}$	
4. The formula used for the determination of surface tension of liquid using drop weight method				
(stalgnometer) is				
a) $\frac{\gamma_1}{\gamma_2} = \frac{m_1^2}{m_2^2}$	b) $\frac{\gamma_1}{\gamma_2} = \frac{m_2}{m_1}$	c) $\frac{\gamma_1}{\gamma_2} = \frac{m_2^2}{m_1^2}$	$d)\frac{\gamma_1}{\gamma_2}=\frac{m_1}{m_2}$	
5. Viscosity of liquid is	s a measure of			
a) Inter molecular forces between molecules b) Frictional resistance				
c) repulsive forces between the liquid molecules d) None of these				
6. The reciprocal of Viscosity is called as				
a) Frictional resist	ance b) surface	tension c) fluidity	d) None of these	
7. As the temperature increases the viscosity of liquid is				
a) Increases	b) decreases	c) remains same	d) None of these	
8. The unit of viscosity is				
a) gm cm ⁻¹ s ¹	b) kg m ⁻¹ s ¹	c) poise	d) All of these	
9. The density of liquid is expressed in				
a) gm cm	b) gm cm ⁻³	c) gm cm ⁻²	d) gm cm ⁻¹	
10. The S.I. unit of viscosity is				
10. The S.I. unit of vis	scosity is			