DEGLOOR COLLEGE, DEGLOOR

Class - B.Sc. I Year (sem-II) Subject - Physical Chemistry-IV (MCQ)

1. Atomic Structure

1. A subatomic particle which has unit negative charge and negligible mass is called as \qquad
a) proton
b) electron
c) neutron
d) Hydrogen atom
2. A subatomic particle which has unit positive charge and one unit mass is called as \qquad
a) proton
b) electron
c) neutron
d) Hydrogen atom
3. A subatomic particle which has zero charge and one unit mass is called as \qquad
a) proton
b) electron
c) neutron
d) Hydrogen atom
4. In Hydrogen spectra, Lyman series is obtained when electron jumps from higher energy level to \qquad
a) $\mathbf{1}$ st energy level
b) 2 nd energy level
c) 3 rd energy level
d) 4 th energy level
5. In Hydrogen spectra, Balmer series is obtained when electron jumps from higher energy level to \qquad
a) 1 st energy level
b) $\mathbf{2}$ nd energy level
c) 3 rd energy level
d) 4 th energy level
6. In Hydrogen spectra, Paschen series is obtained when electron jumps from higher energy level to
a) 1 st energy level
b) 2 nd energy level
c) 3 rd energy level
d) 4 th energy level
7. In Hydrogen spectra, Brackett series is obtained when electron jumps from higher energy level to \qquad
a) 1 st energy level
b) 2 nd energy level
c) 3 rd energy level
d) 4 th energy level
8. In Hydrogen spectra, Pfund series is obtained when electron jumps from higher energy level to
a) 1 st energy level
b) 3 rd energy level
c) $\mathbf{5}$ th energy level
d) 4 th energy level
9. In Hydrogen spectra, Lyman series lies in \qquad
a) ultra-violet region
b) visible region
c) Infrared region
d) None of these
10. In Hydrogen spectra, Balmer series lies in \qquad
a) ultra-violet region
b) visible region
c) Infrared region
d) None of these
11. In Hydrogen spectra, Paschen series lies in \qquad
a) ultra-violet region
b) visible region
c) Infrared region
d) None of these
12. In Hydrogen spectra, Brackett series lies in
a) ultra-violet region
b) visible region
c) Infrared region
d) None of these
13. In Hydrogen spectra, Pfund series lies in
a) ultra-violet region
b) visible region
c) Infrared region
d) None of these
14. The maximum number of electrons in an orbit is \qquad
a) n^{2}
b) 2 n
c) $\mathbf{2} \mathbf{n}^{\mathbf{2}}$
d) $2 \mathrm{n}+1$
15. The maximum numbers of electrons in a subshell is given by \qquad
a) $2 n^{2}$
b) $2(I+1)$
c) $2 I+1$
d) $2(2 I+1)$
16. The radius of Bohr orbit is proportional to \qquad
a) n^{2}
b) n
c) $2 n^{2}$
d) $\frac{1}{n^{2}}$
17. The energy of an electron in an orbit is proportional to \qquad
a) n^{2}
b) n
c) $2 n^{2}$
d) $\frac{1}{\mathrm{n}^{2}}$
18. Cathode rays are deflected by
a) Electric field
b) Magnitc field
c) Electric \& Magnitc field
d) None of these.
19. \qquad is electrically neutral particle carrying one unit mass.
a) proton
b) electron
c) neutron
d) Hydrogen atom
20. The atomic number of an element is equal to the number of \qquad in the nucleus of atom
a) proton
b) electron
c) neutron \& proton
d) neutron
21. In Bohr's atomic model, the angular momentum of an electron is given by
a) $m v r=\frac{h}{2 \pi}$
b) $\mathrm{mvr}=\frac{\mathrm{nh}}{4 \pi}$
c) $\mathrm{mvr}=\frac{\mathrm{h}}{2 \mathrm{n} \pi}$
d) $\mathbf{m v r}=\frac{\mathrm{nh}}{2 \pi}$
22. According to Bohr's atomic model, the radius of orbit is given by
a) $r=\frac{n h^{2}}{4 \pi^{2} \mathrm{me}^{2}}$
b) $\mathbf{r}=\frac{\mathbf{n}^{2} \mathbf{h}^{2}}{4 \boldsymbol{\pi}^{2} \mathrm{me}^{2}}$
c) $\mathrm{r}=\frac{\mathrm{n}^{2} \mathrm{~h}^{2}}{4 \pi^{2} \mathrm{me}}$
d) $r=\frac{n^{2} h^{2}}{4 \pi m^{2}}$
23. The radius of first Bohr orbit is $0.529 \mathrm{~A}^{\circ}$, the radius of second Bohr orbit is \qquad
a) $1 \times 0.529 \mathrm{~A}^{\circ}$
b) $2 \times 0.529 \mathrm{~A}^{\circ}$
c) $3 \times 0.529 \mathrm{~A}^{\circ}$
d) $4 \times 0.529 \mathrm{~A}^{\circ}$
24. The energy of an electron in nth orbit is given by \qquad
a) $\mathbf{E}=-\frac{2 \pi^{2} \mathbf{m e}^{4}}{\mathbf{n}^{2} \mathrm{~h}^{2}}$
b) $E=-\frac{4 \pi^{2} m e^{4}}{n^{2} h^{2}}$
c) $E=-\frac{2 \pi^{2} m e^{2}}{n^{2} h^{2}}$
d) $E=-\frac{4 \pi^{2} \mathrm{me}^{2}}{\mathrm{n}^{2} \mathrm{~h}^{2}}$
25. Principle quantum number (n) represents
a) average size of the electron cloud
b) average energy of the electron
c) average distance of electron from nucleus
d) all of these
26. The shape of orbital occupied by the electron is given by
a) Principle quantum number
b) Azimuthal quantum number
c) Magnetic quantum number
d) Spin quantum number
27. "No two electrons in an atom can have the same set of all four identical quantum numbers" this is statement of \qquad
a) Aufbau principle
b) Hund's rule
c) Pauli's exclusion principle
d) None of these
28. The distribution of electrons among the orbitals of a subshell is given by \qquad
a) Aufbau principle
b) Hund's rule
c) Pauli's exclusion principle
d) None of these
29. Two electrons occupying the same orbitals have different \qquad
a) Principle quantum number
b) Azimuthal quantum number
c) Magnetic quantum number
d) Spin quantum number
30. "The electrons in various orbitals are arranged according to their increasing order of energy" is statement of \qquad
a) Aufbau principle
b) Hund's rule
c) Pauli's exclusion principle
d) None of these
31. In hydrogen spectrum, the series which falls in ultra-violet region is \qquad
a) Balmer series
b) Lyman series
c) Paschen series
d) Brackett series
32. The total number of Magnetic quantum number for a given value of Azimuthal quantum is
a) 21
b) 2 I - 1
c) $21+1$
d) $21+2$
33. The energy of an electron in Bohr's atom \qquad as we move away from the nucleus.
a) Increases
b) decreases
c) Remains the same
d) None of these
34. The quantum number which accounts for the splitting ofspectral lines is \qquad
a) Principle quantum number
b) Azimuthal quantum number
c) Magnetic quantum number
d) Spin quantum number
35. The angular momentum of the electron is defined by the quantum number \qquad
a) n
b) I
c) m
d) s
36. The Principle quantum number (n) is related to the \qquad
a) Orbital angular momentum
b) shape and size of orbital
c) Orientation of orbital
d) Average size of orbital
37. The energy of an electron in Bohr's first orbit is -13.6 eV . The energy of the $\mathrm{n}=3$ level corresponds to \qquad
a) -4.53 eV
b) 2.26 eV
c) $\mathbf{- 1 . 5 1} \mathrm{eV}$
d) None of these
38. The two electrons in the first shell will differ in the values of \qquad
a) n
b) I
c) m
d) s
39. If the value of Azimuthal quantum number $I=2$, then the value of magnetic quantum numbers (m) are \qquad
a) 2
b) 3
c) 4
d) 5

2. Liquid State

1. The unit of surface tension is \qquad
a) dyne cm^{-1}
b) dyne cm
c) $\mathrm{dyne}^{-1} \mathrm{~cm}$
d) dyne $^{-1} \mathrm{~cm}^{-1}$
2. With the rise in temperature, the surface tension of liquid is \qquad
a) Increases
b) decreases
c) remains same
d) None of these
3. The formula used for the determination of surface tension of liquid using number drop method (stalgnometer) is \qquad
a) $\frac{\gamma_{1}}{\gamma_{2}}=\frac{\mathrm{n}_{1 \mathrm{~d}_{1}}}{\mathrm{n}_{2 \mathrm{~d}_{2}}}$
b) $\frac{\gamma_{1}}{\gamma_{2}}=\frac{\mathrm{n}_{1 \mathrm{~d}_{2}}}{\mathrm{n}_{2 \mathrm{~d}_{1}}}$
c) $\frac{\gamma_{1}}{\gamma_{2}}=\frac{n_{2 d_{1}}}{n_{1 d_{2}}}$
d) $\frac{\gamma_{1}}{\gamma_{2}}=\frac{\mathrm{n}_{2} \mathrm{~d}_{2}}{\mathrm{n}_{1 \mathrm{~d}_{1}}}$
4. The formula used for the determination of surface tension of liquid using drop weight method (stalgnometer) is \qquad
a) $\frac{\gamma_{1}}{\gamma_{2}}=\frac{m_{1}{ }^{2}}{m_{2}{ }^{2}}$
b) $\frac{\gamma_{1}}{\gamma_{2}}=\frac{m_{2}}{m_{1}}$
c) $\frac{\gamma_{1}}{\gamma_{2}}=\frac{m_{2}{ }^{2}}{m_{1}{ }^{2}}$
d) $\frac{\gamma_{1}}{\gamma_{2}}=\frac{m_{1}}{m_{2}}$
5. Viscosity of liquid is a measure of \qquad
a) Inter molecular forces between molecules
b) Frictional resistance
c) repulsive forces between the liquid molecules
d) None of these
6. The reciprocal of Viscosity is called as \qquad
a) Frictional resistance
b) surface tension
c) fluidity
d) None of these
7. As the temperature increases the viscosity of liquid is \qquad
a) Increases
b) decreases
c) remains same
d) None of these
8. The unit of viscosity is \qquad
a) $\mathrm{gm} \mathrm{cm}^{-1} \mathrm{~s}^{1}$
b) $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{1}$
c) poise
d) All of these
9. The density of liquid is expressed in \qquad
a) gm cm
b) $\mathbf{g m ~ c m}^{-3}$
c) $\mathrm{gm} \mathrm{cm}^{-2}$
d) $\mathrm{gm} \mathrm{cm}^{-1}$
10. The S.I. unit of viscosity is \qquad
a) $\mathrm{kg} \mathrm{cm}^{-1} \mathrm{~s}^{1}$
b) $\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{1}$
c) $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
d) $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{1}$
