Physical Chemistry (Paper -VII)

Choose the correct answer of the following

1. The energy of a photon is given by the relation
a) $E=\frac{h \nu}{\lambda}$
b) $\mathbf{E}=\frac{\mathrm{hC}}{\lambda}$
c) $\mathrm{E}=\frac{\mathrm{hC}}{v}$
d) $E=\frac{\lambda C}{h}$
2. When a beam of light of sufficiently high frequency is allowed to strike on a metal Surface in vacuum, electrons are ejected from the metal surface. This phenomenon is called as
a) black body radiation
b) Zeeman effect
c) Compton effect
d) Photoelectric effect
3. In photoelectric effect, the kinetic energy of the photoelectrons increases linearly with the \qquad
a) Wavelength of the incident light
b) Frequency of the incident light
c) Velocity oh the incident light
d) None of these
4. The kinetic energy of the photoelectrons emitted by the metal surface is given by the relation (is the threshold frequency and v is the frequency of the incident light)
a) $\frac{1}{2} m v^{2}=\mathrm{h} v$
b) $\frac{1}{2} \mathbf{m} v^{2}=h v+h v_{0}$
c) $\frac{1}{2} \mathrm{mv}^{2}=\mathrm{h} v-\mathrm{h} v_{0}$
d) $\frac{1}{2} \mathrm{mv}^{2}=\mathrm{h} v_{0}$
5. According to de-Broglie's equation, the momentum of a particle is proportional to wavelength.
a) Inversely
b) Directly
c) is not
d) None of these
6. The wavelength of the large objects is of no significance as it is too to be measurable by instrument.
a) large
b) heavy
c) small
d) None of these
7. de-Broglie's equation is
a) $\lambda=\frac{h v}{m}$
b) $\lambda=\frac{\mathrm{mv}}{\mathrm{h}}$
c) $\lambda=\mathrm{hmv}$
d) $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$
8. It is impossible to determine simultaneously the position and momentum (velocity) with accuracy of a particle like electron. This statement is \qquad
a) Heisenberg's uncertainty principle
b) de-Broglie's principle
c) Aufbau's principle
d) Planck's law
9. The relation $\Delta x . \Delta p \geq \frac{h}{4 \pi}$ represents
a) de-Broglie's equation
b) Pauli's exclusion principle
c) Schrodinger's wave equation
d) Heisenberg's uncertainty principle
10. In Schrodinger's wave equation, the symbol ' Ψ ' represents the \qquad
a) wavelength of standing wave
b) frequency of standing wave
c) Amplitude of standing wave
d) None of these
11. The magnitude of quantum or photon of energy is
proportional to the frequency of radiant energy or is \qquad proportional to the wavelength.
a) inversely, directly
b) directly, inversely
c) directly, directly
d) inversely, inversely
12. According to Planck, atoms or molecules absorb or emits radiant energy in the

Form of discrete units of wave called as
a) proton
b) electron
c) radiation
d) photon.
13. According to Compton, when x-rays of wavelength ' λ ' struck on a sample of graphite an electron was ejected and x-ray scattered had ------------wavelength.
a) smaller
b) longer
c) equal
d) None of these
14. Compton calculated the shift of wavelength by using the equation
a) $\lambda=\frac{2 \mathrm{~h}}{\mathrm{mc}} \cos ^{2} \frac{\theta}{2}$
b) $\lambda=\frac{2 \mathrm{~h}}{\mathrm{~m}} \sin ^{2} \frac{\theta}{2}$
c) $\lambda=\frac{2 \mathrm{~h}}{\mathrm{mc}} \sin ^{2} \frac{\theta}{2}$
d) $\lambda=\frac{2 \mathrm{~h}}{\mathrm{~m}} \cos ^{2} \frac{\theta}{2}$
15. Schrodinger's equation for a particle in one direction is given by \qquad
a) $\frac{d^{2} \Psi}{d x^{2}}+\frac{8 \pi^{2} m}{h}(E-V) \Psi=0$
b) $\frac{\mathrm{d}^{2} \Psi}{\mathrm{dx}^{2}}+\frac{8 \pi^{2} \mathrm{~m}}{\mathrm{~h}^{2}}(\mathrm{E}) \Psi=0$
c) $\frac{\mathrm{d}^{2} \Psi}{\mathrm{dx}^{2}}+\frac{8 \pi \mathrm{~m}}{\mathrm{~h}^{2}}(\mathrm{E}-\mathrm{V}) \Psi=0$
d) $\frac{\mathrm{d}^{2} \boldsymbol{\Psi}}{\mathrm{dx}}+\frac{8 \pi^{2} \mathrm{~m}}{\mathrm{~h}^{2}}(\mathbf{E}-\mathrm{V}) \boldsymbol{\Psi}=\mathbf{0}$
16. The wavefunction ' Ψ ' is finite, single valued and continuous, these requirements meet if ' E ' is given certain characteristic values called as \qquad
a) de-Broglie values
b) Eigen values
c) Schrodinger values
d) None of these
17. The Schrodinger equation for energy when particle in a one dimensional box is --
a) $\mathbf{E}=\frac{\mathbf{n}^{2} \mathbf{h}^{2}}{8 \mathrm{ma}^{2}}$
b) $\mathrm{E}=\frac{\mathrm{h}^{2}}{8 \mathrm{ma}^{2}}$
c) $E=\frac{n^{2} h^{2}}{8 m a}$
d) $\mathrm{E}=\frac{\mathrm{nh}^{2}}{8 \mathrm{ma}^{2}}$
18. The Davisson and Germer experiment gives solid support to the \qquad of dual nature of matter.
a) Heisenberg's uncertainty principle
b) Pauli's exclusion principle
c) Schrodinger's wave concept
d) de-Broglie's concept
19. Which of the following is Laplacian operature?
a) Δ^{2}
b) ∇^{2}
c) δ^{2}
d) Ψ^{2}
20. According to Planck, hot body radiates energy in a
a) continuous waves
b) continuous and discontinuous waves
c) discontinuous waves
d) None of these

1. The first law of Thermodynamics is
a) the total energy of an isolated system remains constant though it may change from one form to another
b) total energy of system and surrounding remains constant.
c) whenever energy of one type disappears, equivalent amount of another type is produced
d) All of these.
2. The mathematical relation for the first law of thermodynamics is
a) $\Delta E=q w$
b) $\Delta E=w$
c) $\Delta E=q$
d) All of these
3. The phenomenon of lowering of temp. when a gas is made to expand from a region of High pressure into a region of low pressure is known as
a) first law of Thermodynamics
b) second law of Thermodynamics
c) Joule Thomson effect
d) Le Chatlier's principle
4. The efficiency of heat engine is given by
a) $\frac{\mathrm{w}}{\mathrm{q}_{2}}=\frac{(\mathrm{T} 2-\mathrm{T} 1)}{\mathrm{T} 1}$
b) $\frac{\mathbf{w}}{\mathbf{q}_{2}}=\frac{(\mathbf{T} 2-\mathrm{T} 1)}{\mathrm{T} 2}$
c) $\frac{\mathrm{w}}{\mathrm{q}_{2}}=\frac{(\mathrm{T} 1-\mathrm{T} 2)}{\mathrm{T} 1}$
d) $\frac{\mathrm{w}}{\mathrm{q}_{2}}=\frac{(\mathrm{T} 1-\mathrm{T} 2)}{\mathrm{T} 2}$
5. The entropy of system increases in the order
a) gas < liquid < solid
b) gas < solid < liquid
c) solid < liquid < gas
d) none of these
6. The efficiency of heat engine operating between 400 K to 300 K is
a) 1.0
b) 0.75
c) 0.50
d) 0.25
7. The efficiency of heat engine operating between 1000 K to 300 K is the engine operating between 1000 K to 500 K
a) greater than
b) less than
c) is equal to
d) none of these
8. Which of the following is true for a cyclic process
a) $\Delta E=0$
b) $\Delta E=q-w$
c) $q=w$
d) All of these
9. The cycle of processes which occurs under reversible conditions is referred to as
a) Cyclic process
b) closed process
c) Carnot cycle
d) reversible cycle
10. Which of the following is correct unit of entropy?
a) KJmol
b) $\mathrm{JK}^{-1} \mathrm{~mol}$
c) $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
b) None of these
11. The efficiency of heat engine is maximum when
a) Temperature of source and sink is maximum
b) Temperature of source and sink is minimum
c) Temperature of source is minimum and sink is maximum
d) Temperature of source is maximum and sink is minimum
12. Formula for inversion temperature is
a) $\mathrm{Ti}=\frac{2 \mathrm{a}}{\mathrm{nb}}$
b) $\mathbf{T i}=\frac{2 \mathrm{a}}{\mathrm{Rb}}$
c) $\mathrm{Ti}=\frac{\mathrm{a}}{2 \mathrm{~b}}$
d) $\mathrm{Ti}=\frac{\mathrm{a}}{\mathrm{b}}$
13. Entropy is a measure of
a) definite order
b) disorder
c) both a \& b
d) none of these
14. In spontaneous processes there is
a) Increase in entropy and disorder
b) decrease in entropy and increase in disorder
c) decrease in entropy and disorder
d) increase in entropy and decrease in disorder
15. Entropy change in an isothermal and reversible expansion of an ideal gas is \qquad
a) $\Delta \mathrm{E}=\mathrm{nRT} \log \frac{\mathrm{V} 1}{\mathrm{~V} 2}$
b) $\Delta \mathrm{E}=\mathrm{nRT} \log \frac{\mathrm{V} 2}{\mathrm{~V} 1}$
c) $\Delta E=n R \log \frac{v 2}{V_{1}}$
d) $\Delta E=n R \log \frac{V 1}{V 2}$
16. Machines working reversibly between the same two temperature have the \qquad
a) more efficiency
b) less efficiency
c) both a \& b
d) same efficiency
17. In Carnot cycle net heat absorbed is
a) $q=R(T 2-T 1) \log \frac{\mathrm{V} 2}{\mathrm{~V} 1}$
b) $q=\mathrm{R}(\mathrm{T} 2-\mathrm{T} 1) \log \frac{\mathrm{V} 1}{\mathrm{~V} 2}$
c) $q=\mathrm{R}(\mathrm{T} 1-\mathrm{T} 2) \log \frac{\mathrm{V} 2}{\mathrm{~V} 1}$
d) $q=\mathrm{R}(\mathrm{T} 1-\mathrm{T} 2) \log \frac{\mathrm{V} 1}{\mathrm{~V} 2}$
18. Inversion temperature depends upon
a) Vander Waal's constant 'a'
b) Vander Waal's constant 'b'
c) Vander Waal's constant ' a ' \& 'b'
d) None of these
19. Joule Thomson coefficient is given by
a) $\mu=-\frac{\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{T}}}{\mathrm{C}_{\mathrm{v}}}$
b) $\boldsymbol{\mu}=-\frac{\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{T}}}{\mathbf{C}_{\mathrm{p}}}$
c) $\mu=\frac{\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{T}}}{\mathrm{C}_{\mathrm{V}}}$
d) $\mu=\frac{\left(\frac{\partial H}{\partial \mathrm{P}}\right)_{\mathrm{T}}}{\mathrm{C}_{\mathrm{p}}}$
20. When H_{2} gas expands from high pressure region to low pressure region
a) H_{2} gas get cooled
b) H_{2} gas get warmed
c) H_{2} gas remains in the same state
d) All of these
21. For an ideal gas, Joule Thomson effect is \qquad
a) Positive
b) Negative
c) Zero
d) None of these
22. Joule Thomson coefficient depends upon
a) Temperature
b) Pressure
c) Volume
d) None of these
23. Inversion temperature of a gas is that temperature \qquad which the gas on expansion gives cooling effect.
a) above
b) below
c) both a \& b
d) None of these
24. Entropy change of an Isochoric process is given by
a) $\Delta \mathrm{S}=\mathrm{C}_{\mathrm{p}} \log \frac{\mathrm{T} 2}{\mathrm{~T} 1}$
b) $\Delta \mathrm{S}=\mathrm{C}_{\mathrm{p}} \log \frac{\mathrm{P} 1}{\mathrm{P} 2}$
c) $\Delta \mathrm{S}=\mathrm{C}_{\mathrm{V}} \log \frac{\mathrm{P} 1}{\mathrm{P} 2}$
d) $\Delta S=C_{v} \log \frac{T 2}{T 1}$
25. Calculate entropy change when 42 gm of N_{2} gas expands isothermally \& reversibly from $5 \mathrm{dm}^{3}$ to $25 \mathrm{dm}^{3}$ at 300 K . $(\mathrm{R}=8.314 \mathrm{~J} / \mathrm{k} / \mathrm{mol})$
a) $30.07 \mathrm{~J} / \mathrm{k} / \mathrm{mol}$
b) $28.07 \mathrm{~J} / \mathrm{mol}$
c) $20.07 \mathrm{~J} / \mathrm{k} / \mathrm{mol}$
d) $20.07 \mathrm{~J} / \mathrm{mol}$
26. The energy of photon of wavelength 400 nm is \qquad --
a) 0.496×10^{-19} Joule b) 0.0496×10^{-19} Joule
c) 4.96×10^{-19} Joule
d) None of these
27. Uncertainty in position is $10^{-8} \mathrm{~m}$, uncertainty in momentum is
a) $0.526 \times 10^{-27} \mathrm{Kg} . \mathrm{m}$
b) $5.26 \times 10^{-27} \mathrm{Kg} . \mathrm{m}$
c) $0.0526 \times 10^{-27} \mathrm{Kg} . \mathrm{m}$ d) None of these
28. The phenomenon of lowering of temp. when a gas is made to expand from a region of High pressure into a region of low pressure is known as
a) first law of Thermodynamics
b) second law of Thermodynamics
c) Joule Thomson effect
d) Le Chatlier's principle
29. The efficiency of heat engine is given by
a) $\eta=\frac{(\mathrm{T} 2-\mathrm{T} 1)}{\mathrm{T} 1}$
b) $\eta=\frac{(\mathbf{T} 2-\mathbf{T} 1)}{\mathbf{T} 2}$
c) $\eta=\frac{(\mathrm{T} 1-\mathrm{T} 2)}{\mathrm{T} 1}$
d) $\eta=\frac{(\mathrm{T} 1-\mathrm{T} 2)}{\mathrm{T} 2}$
30. The de Broglie's wavelength of an electron moving with velocity of $5 \times 10^{6} \mathrm{~m} / \mathrm{sec}$ is
a) $1.456 \times 10^{-10} \mathrm{~m}$
b) $0.1456 \times 10^{-8} \mathrm{~m}$
c) $14.56 \times 10^{-8} \mathrm{~m}$
d) None of these
31. The energy of photon is given by
a) $E=h \nu$
b) $E=\frac{h c}{\lambda}$
c) $\mathrm{E}=\mathrm{hc} \bar{v}$
d) All of these
32. The energy of photon associated with light of wavelength $3800 \mathrm{~A}^{\circ}$ is \qquad
a) 5.2×10^{-19} Joule
b) 0.52×10^{-19} Joule
c) 52×10^{-19} Joule
d) None of these
33. According to de-Broglie's equation, the wavelength of a particle is \qquad proportional to velocity.
a) Directly
b) Inversely
c) is not
d) None of these
34. A photon of wavelength $4000 \mathrm{~A}^{\circ}$ strikes a metal surface with work function 2.12×10^{-19} Joule and with kinetic energy is --------------
a) 28.4×10^{-19} Joule
b) 0.284×10^{-19} Joule
c) 2.84×10^{-19} Joule
d) None of these
35. The wavelength of a particle having mass $6.62 \times 10^{-27} \mathrm{Kg}$ moving with speed 10^{3} $\mathrm{m} / \mathrm{sec}$ is \qquad
a) $2 \times 10^{-10} \mathrm{~m}$
b) $1 \times 10^{-10} \mathrm{~m}$
C) $1 \times 10^{-10} \mathrm{~cm}$
d) $2 \times 10^{-10} \mathrm{~cm}$
36. Heisenberg's uncertainty principle is given by
a) $\Delta x . \Delta p \geq \frac{h}{4 \pi}$
b) $\Delta x \cdot \Delta v \geq \frac{h}{4 \pi m}$
c) $\Delta x \cdot m \Delta v \geq \frac{h}{4 \pi}$
d) All of these
37. The uncertainty in position \& velocity of a particle are $10^{-10} \mathrm{~m}$ \& $5.27 \times 10^{-24} \mathrm{~m} / \mathrm{sec}$, The mass of particle is
a) 0.01 kg
b) 1 kg
c) 0.10 kg
d) 10 kg
38. The magnitude of quantum or photon of energy is
----------------- proportional to wavelength.
a) directly
b) inversely
c) is not
d) none of these
39. The decomposition of calcium carbonate is represented by the equation
$\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$, with number of phases equal to \qquad
a) 0
b) 1
c) 2
d) 3
40. A saturated solution of NaCl is a
a) one phase system
b) two phase system
c) three phase system
d) None of these
41. Mathematically phase rule can be expressed as
a) $\mathbf{F}=\mathbf{C}-\mathbf{P}+2$
b) $\mathrm{F}=\mathrm{C}-\mathrm{P}+1$
c) $\mathrm{F}=\mathrm{P}-\mathrm{C}+1$
d)) $\mathrm{F}=\mathrm{P}-\mathrm{C}+2$
42. A mixture of three gases $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{CO}_{2}$ is
a) one phase system
b) two phase system
c) three phase system
d) None of these
43. For a pure gas \& mixture of two gases, the degree of freedom are
a) 2 \& 2
b) 3 \& 2
c) 2 \& 3
d) $3 \& 3$
44. Water system has three phases ice, liquid water \& water vapour. The number of components in the system are
a) 0
b) 1
c) 2
d) 3
45. For one component system the phase rule is
a) $F=2-P$
b) $\mathrm{F}=1-\mathrm{P}$
c) $F=3+P$
d)) $F=3-P$
46. At triple point
a) Temperature is fixed
b) Pressure is fixed
c) Both Temperature \& Pressure are fixed
d) None of these
47. In a one phase, two component system the degree of freedom is \qquad d) 3
48. A drop of water is placed in a stoppered bottle, how many phases are present in the system?
a) 0
b) 1
c) 2
d) 3
49. A system with zero degree of freedom is known as
a) invariant
b) monovariant
c) bivariant
d) None of these
50. The transition temperature of a substance is that temperature at which
a) one enantiomer changes into another
b) one allotropic form changes two another
c) all the phases can co-exist in equilibrium
d) None of these
51. The reduced phase rule for a condensed system is
a) $\mathrm{F}^{\prime}=\mathrm{C}-\mathrm{P}+2$
b) $\mathrm{F}^{\prime}=\mathrm{C}-\mathrm{P}$
c) $\mathrm{F}^{\prime}=\mathrm{P}-\mathrm{C}+3$
d)) $\mathrm{F}^{\prime}=\mathbf{C}-\mathbf{P}+\mathbf{1}$
27.Sulphur system has four phases rhombic, monoclinic, liquid \& vapour sulphur. It is
a) one componennt system
b) two componennt system
c) three componennt system
d) None of these
52. For a bivriant system, the degree of freedom is
a) 0
b) 1
c) 2
d) 3
53. Temperature of triple point of CO_{2} system is \qquad
a) -57 K
b) $-57^{\circ} \mathrm{C}$
c) $57^{\circ} \mathrm{C}$
d) 57 K
54. In $\mathrm{Pb}-\mathrm{Ag}$ system, pure Pb melts at $327^{\circ} \mathrm{C}$, as \% of Ag increases in Pb solution the melting point of lead
a) decreases
b) increases
c) remains constant
d) None of these
55. Upper consulate temperature of Nicotine - water system is
a) $68.5^{\circ} \mathrm{C}$
b) $61^{\circ} \mathrm{C}$
c) $18.5^{\circ} \mathrm{C}$
d) $208^{\circ} \mathrm{C}$
56. In phenol - water system, inside the curve number of liquid layers existing is
a) 1
b) 2
c) 3
d) 4
57. An engine operating between $150^{\circ} \mathrm{C} \& 25^{\circ} \mathrm{C}$ takes 500 Joule heat from a high Temperature Reservoir, the workdone by this system is \qquad
a) 150.5 Joule
b) 142.7 Joule
c) 174.5 Joule
d) $\mathbf{1 4 7 . 7}$ Joule
58. Entropy change of two mole of an ideal gas expands isothermally \& reversibly from $6 \mathrm{~m}^{3}$ to $60 \mathrm{~m}^{3}$ is \qquad
a) $38.92 \mathrm{Joule} / \mathrm{K} / \mathrm{mol}$
b) $38.69 \mathrm{Joule} / \mathrm{K} / \mathrm{mol}$
c) $38.29 \mathrm{Joule} / \mathrm{K} / \mathrm{mol}$
d) $38.09 \mathrm{Joule} / \mathrm{K} / \mathrm{mol}$
59. Entropy change of two mole of an ideal gas expands isothermally at 293 K from pressure 10 atm . to 2 atm . at $27^{\circ} \mathrm{C}$ is
a) $\mathbf{2 6 . 7 6 \mathrm { Joule } / \mathrm { K } / \mathrm { mol }}$
b) 26.16 Joule
\qquad
. Inversion temperature depends upon
a) Vander Waal's constant 'a'
b) Vander Waal's constant 'b'
c) Vander Waal's constant 'a' \& 'b'
d) None of these
60. Entropy is a measure of
a) concentration
b) velocity
c) zig - zag motion
d) randomness
61. A process which proceeds of its own accord without any assistance is
a) Reversible process
b) spontaneous process
c) non spontaneous process
d) irreversible process
62. Entropy is measured in
a) $\mathrm{cal} \mathrm{K}^{-} \mathrm{mol}^{-}$
b) Joule $\mathrm{K}^{-} \mathrm{mol}^{-}$
c) entropy unit
d) All of these
40.Standard entropy, S° of a substance is \qquad
a) entropy at $0^{\circ} \mathrm{C} \& 1 \mathrm{~atm}$. pressure
b) entropy at 0 K \& 1 atm. pressure
c) entropy at $25^{\circ} \mathrm{C} \& 1 \mathrm{~atm}$. pressure
d) entropy at $25 \mathrm{~K} \& 1 \mathrm{~atm}$. pressure
