Physical Chemistry (Paper -VII)

Choose the correct answer of the following

- 1. The energy of a photon is given by the relation -----
 - **b)** $\mathbf{E} = \frac{\mathbf{hC}}{\lambda}$ **c)** $\mathbf{E} = \frac{\mathbf{hC}}{\lambda}$ **d)** $\mathbf{E} = \frac{\lambda C}{\mathbf{h}}$ a) $E = \frac{h\nu}{\lambda}$

2. When a beam of light of sufficiently high frequency is allowed to strike on a metal Surface in vacuum, electrons are ejected from the metal surface. This phenomenon is called as ------

- a) black body radiation b) Zeeman effect
- c) Compton effect d) Photoelectric effect
- 3. In photoelectric effect, the kinetic energy of the photoelectrons increases linearly with the ----
 - a) Wavelength of the incident light
- b) Frequency of the incident light
- c) Velocity oh the incident light d) None of these
- 4. The kinetic energy of the photoelectrons emitted by the metal surface is given by the relation (is the threshold frequency and ν is the frequency of the incident light)

a)
$$\frac{1}{2}mv^2 = hv$$

b) $\frac{1}{2}mv^2 = hv + hv_0$
c) $\frac{1}{2}mv^2 = hv - hv_0$
d) $\frac{1}{2}mv^2 = hv_0$

5. According to de-Broglie's equation, the momentum of a particle is -----proportional to wavelength.

c) is not a) Inversely b) Directly d) None of these

6. The wavelength of the large objects is of no significance as it is too -----to be measurable by instrument.

c) small d) None of these a) large b) heavy

7. de-Broglie's equation is ------

- b) $\lambda = \frac{mv}{h}$ c) $\lambda = hmv$ d) $\lambda = \frac{h}{mv}$ a) $\lambda = \frac{hv}{m}$
- 8. It is impossible to determine simultaneously the position and momentum (velocity) with accuracy of a particle like electron. This statement is -----a) Heisenberg's uncertainty principle b) de-Broglie's principle
 - c) Aufbau's principle
- d) Planck's law 9. The relation $\Delta x. \Delta p \geq \frac{h}{4\pi}$ represents ------
 - a) de-Broglie's equation b) Pauli's exclusion principle
 - c) Schrodinger's wave equation d) Heisenberg's uncertainty principle
- 10. In Schrodinger's wave equation, the symbol ' Ψ ' represents the -----
 - a) wavelength of standing wave
 - b) frequency of standing wave c) Amplitude of standing wave d) None of these
- 11. The magnitude of quantum or photon of energy is ------ proportional to the frequency of radiant energy or is ----- proportional to the wavelength. a) inversely, directly b) directly, inversely c) directly, directly d) inversely, inversely
- 12. According to Planck, atoms or molecules absorb or emits radiant energy in the

Form of discrete units of wave called as
a) $\frac{d^2\Psi}{dx^2} + \frac{8\pi^2 m}{h}(E - V)\Psi = 0$ b) $\frac{d^2\Psi}{dx^2} + \frac{8\pi^2 m}{h^2}(E)\Psi = 0$
c) $\frac{d^2\Psi}{dx^2} + \frac{8\pi m}{h^2}(E - V)\Psi = 0$ d) $\frac{d^2\Psi}{dx^2} + \frac{8\pi^2 m}{h^2}(E - V)\Psi = 0$
16. The wavefunction ' Ψ ' is finite, single valued and continuous, these requirements
meet if 'E' is given certain characteristic values called as
a) de-Broglie values b) Eigen values c) Schrodinger values d) None of these 17. The Schrodinger equation for energy when particle in a one dimensional box is
a) $\mathbf{E} = \frac{\mathbf{n}^2 \mathbf{h}^2}{\mathbf{8ma}^2}$ b) $\mathbf{E} = \frac{\mathbf{h}^2}{\mathbf{8ma}^2}$ c) $\mathbf{E} = \frac{\mathbf{n}^2 \mathbf{h}^2}{\mathbf{8ma}^2}$ d) $\mathbf{E} = \frac{\mathbf{n}\mathbf{h}^2}{\mathbf{8ma}^2}$
 18. The Davisson and Germer experiment gives solid support to the
 c) Schrodinger's wave concept d) de-Broglie's concept 19. Which of the following is Laplacian operature?
19. Which of the following is Laplacian operature? a) Δ^2 b) ∇^2 c) δ^2 d) Ψ^2
19. Which of the following is Laplacian operature?
19. Which of the following is Laplacian operature?a) Δ^2 b) ∇^2 c) δ^2 d) Ψ^2 20. According to Planck, hot body radiates energy in a a) continuous wavesb) continuous and discontinuous waves

6. The efficiency of heat engine operating betw		
	c) 0.50	
7. The efficiency of heat engine operating betw engine operating between 1000 K to 500 K		
a) greater than b) less than 8. Which of the following is true for a cyclic proc		
a) $\Delta E = 0$ b) $\Delta E = q - w$	c) q = w	d) All of these
9. The cycle of processes which occurs under r	eversible conditions	is referred to as
a) Cyclic process b) closed process		d) reversible cycle
10. Which of the following is correct unit of entra a) KJmol b) JK ⁻¹ mol	opy? c).JK ⁻¹ mol ⁻¹	b) None of these
11. The efficiency of heat engine is maximum w		
a) Temperature of source and sink is maxin	num	
b) Temperature of source and sink is minim		
 c) Temperature of source is minimum and d) Temperature of source is maximum and 		1
12. Formula for inversion temperature is		
a) Ti = $\frac{2a}{nb}$ 13. Entropy is a measure of	c) Ti = $\frac{a}{a}$	d) Ti = $\frac{a}{-}$
13. Entropy is a measure of	2b	b b
a) definite order b) disorder	c) both a & b	d) none of these
14. In spontaneous processes there is		
a) Increase in entropy and disorder b)	decrease in entropy	y and increase in disorder
c) decrease in entropy and disorder d) 15. Entropy change in an isothermal and revers		
		-
a) $\Delta E = nRT \log \frac{V_1}{V_2}$ b) $\Delta E = nRT \log \frac{V_2}{V_1}$	$\mathbf{c}) \Delta \mathbf{E} = \mathbf{n} \mathbf{R} \log \mathbf{c}$	$\frac{V^2}{V^1}$ d) $\Delta E = nR \log \frac{V_1}{V_2}$
16. Machines working reversibly between the s	ame two temperatur	e have the
a) more efficiency b) less efficiency		
		d) same efficiency
17 In Carnot cycle net heat absorbed is		
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$	b) $q = R(T2 - T1)$	$\log \frac{V_1}{V_2}$
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$		$\log \frac{V_1}{V_2}$
17. In Carnot cycle net heat absorbed is a) $q = \mathbf{R}(\mathbf{T2} - \mathbf{T1}) \log \frac{\mathbf{V2}}{\mathbf{V1}}$ c) $q = \mathbf{R}(\mathbf{T1} - \mathbf{T2}) \log \frac{\mathbf{V2}}{\mathbf{V1}}$ 18. Inversion temperature depends upon	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$	$\log \frac{V_1}{V_2}$ $\log \frac{V_1}{V_2}$
17. In Carnot cycle net heat absorbed is a) $q = \mathbf{R}(\mathbf{T2} - \mathbf{T1}) \log \frac{\mathbf{V2}}{\mathbf{V1}}$ c) $q = \mathbf{R}(\mathbf{T1} - \mathbf{T2}) \log \frac{\mathbf{V2}}{\mathbf{V1}}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a'	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's	$\log \frac{V_1}{V_2}$ $\log \frac{V_1}{V_2}$
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' c) Vander Waal's constant 'a' & 'b'	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these	$\log \frac{V_1}{V_2}$ $\log \frac{V_1}{V_2}$
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' c) Vander Waal's constant 'a' & 'b' 19. Joule Thomson coefficient is given by	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these	$\log \frac{V_1}{V_2}$ $\log \frac{V_1}{V_2}$
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' c) Vander Waal's constant 'a' & 'b' 19. Joule Thomson coefficient is given by	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these	$\log \frac{V_1}{V_2}$ $\log \frac{V_1}{V_2}$
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' c) Vander Waal's constant 'a' & 'b' 19. Joule Thomson coefficient is given by	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these	$\log \frac{V_1}{V_2}$ $\log \frac{V_1}{V_2}$
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' c) Vander Waal's constant 'a' & 'b' 19. Joule Thomson coefficient is given by	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these	$\log \frac{V_1}{V_2}$ $\log \frac{V_1}{V_2}$
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' c) Vander Waal's constant 'a' & 'b' 19. Joule Thomson coefficient is given by a) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_V}$ c) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_V}$	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these b) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_p}$ d) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_p}$	$log \frac{V1}{V2} log \frac{V1}{V2} constant 'b'$
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' c) Vander Waal's constant 'a' b) Vander Waal's constant 'a' c) Vander Waal's consta	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these b) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_p}$ d) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_p}$ region to low pressure b) H ₂ gas get wa	$log \frac{V1}{V2} \\ log \frac{V1}{V2} \\ constant 'b'$
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' & 'b' 19. Joule Thomson coefficient is given by a) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_V}$ c) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_V}$ 20. When H ₂ gas expands from high pressure r a) H ₂ gas get cooled c) H ₂ gas remains in the same state	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these b) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_p}$ d) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_p}$ region to low pressur b) H ₂ gas get wa d) All of these	$log \frac{V1}{V2} \\ log \frac{V1}{V2} \\ constant 'b'$
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' & 'b' 19. Joule Thomson coefficient is given by a) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_V}$ c) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_V}$ 20. When H ₂ gas expands from high pressure r a) H ₂ gas get cooled c) H ₂ gas remains in the same state 21. For an ideal gas, Joule Thomson effect is	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these b) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_p}$ d) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_p}$ region to low pressur b) H_2 gas get wa d) All of these	$log \frac{V1}{V2} \\ log \frac{V1}{V2} \\ constant 'b' \\ re region \\ mmed$
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' & 'b' 19. Joule Thomson coefficient is given by a) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_V}$ c) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_V}$ 20. When H ₂ gas expands from high pressure r a) H ₂ gas get cooled c) H ₂ gas remains in the same state 21. For an ideal gas, Joule Thomson effect is a) Positive b) Negative	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these b) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_p}$ d) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_p}$ egion to low pressur b) H ₂ gas get wa d) All of these c) Zero	$log \frac{V1}{V2} \\ log \frac{V1}{V2} \\ constant 'b'$
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' & 'b' 19. Joule Thomson coefficient is given by a) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_V}$ c) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_V}$ 20. When H ₂ gas expands from high pressure r a) H ₂ gas get cooled c) H ₂ gas remains in the same state 21. For an ideal gas, Joule Thomson effect is a) Positive b) Negative 22. Joule Thomson coefficient depends upon a) Temperature b) Pressure	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these b) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_p}$ d) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_p}$ region to low pressur b) H ₂ gas get wa d) All of these c) Zero c) Volume	log V1 V2 log V1 v2 constant 'b' re region armed d) None of these d) None of these
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' & 'b' 19. Joule Thomson coefficient is given by a) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_V}$ c) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_V}$ 20. When H ₂ gas expands from high pressure r a) H ₂ gas get cooled c) H ₂ gas remains in the same state 21. For an ideal gas, Joule Thomson effect is a) Positive b) Negative 22. Joule Thomson coefficient depends upon a) Temperature b) Pressure 23. Inversion temperature of a gas is that temperature	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these b) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_p}$ d) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_p}$ region to low pressur b) H ₂ gas get wa d) All of these c) Zero c) Volume	log V1 V2 log V1 v2 constant 'b' re region armed d) None of these d) None of these
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' & 'b' 19. Joule Thomson coefficient is given by a) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_V}$ c) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_V}$ 20. When H ₂ gas expands from high pressure r a) H ₂ gas get cooled c) H ₂ gas remains in the same state 21. For an ideal gas, Joule Thomson effect is a) Positive b) Negative 22. Joule Thomson coefficient depends upon a) Temperature b) Pressure 23. Inversion temperature of a gas is that temperature parts of the state state for the state	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these b) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_p}$ d) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_p}$ region to low pressur b) H ₂ gas get wa d) All of these c) Zero c) Volume erature	log V1 V2 log V1 V2 constant 'b' re region trimed d) None of these d) None of these which the gas on
17. In Carnot cycle net heat absorbed is	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these b) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_p}$ d) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_p}$ region to low pressur b) H ₂ gas get wa d) All of these c) Zero c) Volume erature both a & b	log V1 V2 log V1 V2 constant 'b' re region mmed d) None of these d) None of these which the gas on) None of these
17. In Carnot cycle net heat absorbed is a) $q = R(T2 - T1) \log \frac{V2}{V1}$ c) $q = R(T1 - T2) \log \frac{V2}{V1}$ 18. Inversion temperature depends upon a) Vander Waal's constant 'a' & 'b' 19. Joule Thomson coefficient is given by a) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_V}$ c) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_V}$ 20. When H ₂ gas expands from high pressure r a) H ₂ gas get cooled c) H ₂ gas remains in the same state 21. For an ideal gas, Joule Thomson effect is a) Positive b) Negative 22. Joule Thomson coefficient depends upon a) Temperature b) Pressure 23. Inversion temperature of a gas is that temperature parts of the state state for the state	b) $q = R(T2 - T1)$ d) $q = R(T1 - T2)$ b) Vander Waal's d) None of these b) $\mu = -\frac{(\frac{\partial H}{\partial P})_T}{C_p}$ d) $\mu = \frac{(\frac{\partial H}{\partial P})_T}{C_p}$ region to low pressur b) H ₂ gas get wa d) All of these c) Zero c) Volume erature both a & b	log V1 V2 log V1 V2 constant 'b' re region mmed d) None of these d) None of these which the gas on) None of these

5 dm ³ to 25 dm ³ at 300 k. (R = 8.314 J.Kmol) a) 30.07 J/k/mol b) 28.07 J/mol c) 20.07 J/k/mol d) 20.07 J/mol 1. The energy of photon of wavelength 400 nm isa) 0.466 x 10 ⁻¹⁹ Joule c) 4.96 x 10 ⁻¹⁹ Joule d) None of these 2. Uncertainty in position is 10 ⁻⁸ m, uncertainty in momentum isa) 0.526 x 10 ⁻²⁷ Kg.m d) None of these 3. The phenomenon of lowering of terms. When a gas is made to expand from a region of High pressure into a region of low pressure is known as a) first law of Thermodynamicsb) second law of Thermodynamics c) Joule Thomson effectb) $q = (\frac{T2-T1}{T2}$ c) $q = \frac{(T1-T2)}{T1}$ d) $q = \frac{(T1-T2)}{T2}$ 5. The de Broglie's wavelength of an electron moving with velocity of 5 x 10 ⁶ m/sec is a) 1.456 x 10 ⁻¹⁹ m b) 0.1456 x 10 ⁻⁶ m c) 14.56 x 10 ⁻⁶ m d) None of these 6. The energy of photon associated with light of wavelength 3800 A ^s is a) 5.2 x 10 ⁻¹⁹ Joule b) 0.52 x 10 ⁻¹⁹ Joule c) 52 x 10 ⁻¹⁹ Joule d) None of these 7. The energy of photon associated with light of wavelength 3800 A ^s is a) 21 crctly b) 10 cr2 x 10 ⁻¹⁹ Joule c) 52 x 10 ⁻¹⁹ Joule d) None of these 8. According to de-Broglie's equation, the wavelength of a particle is proportional to velocity. a) 21 crctly b) 10 x 10 ⁻¹⁹ Joule c) 284 x 10 ⁻¹⁹ Joule d) None of these 9. A photon of wavelength 4000 A ^s strikes a metal surface with work function 2.12 x 10 ⁻¹⁹ Joule and with kinetic energy is a) $\Delta x \Delta p \ge \frac{h}{4\pi\pi}$ b) $\Delta x \Delta v \ge \frac{h}{4\pi\pi}$ c) $\Delta x Ma v \ge \frac{h}{4\pi\pi}$ d) All of these 10. The wavelength of a particle having mass 6.62 x 10 ⁻²⁷ Kg moving with speed 10 ³ m/sec is a) 0.0 kg b) 1 kg c) 0.10 kg d) 10 kg 13. The magnitude of quantum or photon of energy is	25. Calculate entropy change when 42 gm of	N ₂ gas expands isotherma	lly & reversibly from	
a) 0.496 x 10 ⁻¹⁹ Joule b) 0.0496 x 10 ⁻¹⁹ Joule c) 4.96 x 10 ⁻¹⁹ Joule d) None of these 2. Uncertainty in position is 10 ⁻⁸ m, uncertainty in momentum is a) 0.526 x 10 ⁻²⁷ Kg,m b) 5.26 x 10 ⁻²⁷ Kg,m c) 0.0526 x 10 ⁻²⁷ Kg,m d) None of these 3. The phenomenon of lowering of term, when a gas is made to expand from a region of High pressure into a region of low pressure is known as a) first law of Thermodynamics b) second law of Thermodynamics c) Joule Thomson effect d) Le Chattler's principle 4. The efficiency of heat engine is given by a) $\eta = \frac{(T2-T1)}{T_1}$ b) $\eta = \frac{(T2-T1)}{T2}$ c) $\eta = \frac{(T1-T2)}{T}$ d) $\eta = \frac{(T+T2)}{T_2}$ 5. The de Broglie's wavelength of an electron moving with velocity of 5 x 10 ⁶ m/sec is a) 1.456 x 10 ⁻¹⁰ m b) 0.1456 x 10 ⁻² m c) 14.56 x 10 ⁻⁶ m d) None of these 6. The energy of photon associated with light of wavelength 3800 A ^c is a) E = hv b) E = $\frac{hc}{\lambda}$ c) E = hc\bar{v} d) All of these 7. The energy of photon associated with light of wavelength 3800 A ^c is a) 5.2 x 10 ⁻¹⁹ Joule b) 0.52 x 10 ⁻¹⁹ Joule c) 52 x 10 ⁻¹⁹ Joule d) None of these 8. According to de-Broglie's equation, the wavelength of a particle is b) Inversely c) is not d) None of these 9. A photon of wavelength 4000 A ^o strikes a metal surface with work function 2.12 x 10 ⁻¹⁹ Joule and with kinetic energy is a) 2x 410 ⁻¹⁹ Joule b) 0.284 x 10 ⁻¹⁹ Joule c) 2.84 x 10 ⁻¹⁹ Joule d) None of these 10. The wavelength of a particle having mass 6.62 x 10 ⁻²⁷ Kg moving with speed 10 ³ m/sec is	a) 30.07 J/k/mol b) 28.07 J/mol	c) 20.07 J/k/mol	d) 20.07 J/mol	
a) first law of Thermodynamics b) second law of Thermodynamics c) Joule Thomson effect d) Le Chatlier's principle 4. The efficiency of heat engine is given by a) $\eta = \frac{(T2-T1)}{T_1}$ b) $\eta = \frac{(T2-T1)}{T2}$ c) $\eta = \frac{(T1-T2)}{T_1}$ d) $\eta = \frac{(T1-T2)}{T_2}$ 5. The de Broglie's wavelength of an electron moving with velocity of 5 x 10 ⁶ m/sec is a) 1.456 x 10 ⁻¹⁰ m b) 0.1456 x 10 ⁻⁸ m c) 14.56 x 10 ⁻⁸ m d) None of these 6. The energy of photon is given by a) E = hv b) E = $\frac{hc}{\lambda}$ c) E = hcv d) All of these 7. The energy of photon associated with light of wavelength 3800 A ^o is a) 5.2 x 10 ⁻¹⁹ Joule b) 0.52 x 10 ⁻¹⁹ Joule c) 52 x 10 ⁻¹⁹ Joule d) None of these 8. According to de-Broglie's equation, the wavelength of a particle is proportional to velocity. a) Directly b) Inversely c) is not d) None of these 9. A photon of wavelength 4000 A ^o strikes a metal surface with work function 2.12 x 10 ⁻¹⁹ Joule and with kinetic energy is a) 28.4 x 10 ⁻¹⁹ Joule b) 0.284 x 10 ⁻¹⁹ Joule c) 2.84 x 10 ⁻¹⁹ Joule d) None of these 10. The wavelength of a particle having mass 6.62 x 10 ⁻²⁷ Kg moving with speed 10 ³ m/sec is a) $\Delta x \Delta p \ge \frac{h}{4\pi}$ b) $\Delta x \Delta v \ge \frac{h}{4\pi }$ c) $\Delta x m\Delta v \ge \frac{h}{4\pi}$ d) All of these 12. The uncertainty principle is given by a) $\Delta x \Delta p \ge \frac{h}{4\pi}$ b) $\Delta x \Delta v \ge \frac{h}{4\pi }$ c) $\Delta x m\Delta v \ge \frac{h}{4\pi}$ d) All of these 13. The magnitude of quantum or photon of energy is proprotional to wavelength. a) one phase system b) two phase system c) three phase system d) None of these 14. The decomposition of calcium carbonate is represented by the equation CaCO _{3 (6)} — CaO ₍₆₎ + CO _{2 (0)} , with number of phases equal to a) one phase system b) two phase system c) three phase system d) None of these 15. A saturated solution NAC is a	 a) 0.496 x 10⁻¹⁹ Joule b) 0.0496 x 10⁻¹⁹ x 2. Uncertainty in position is 10⁻⁸ m, uncertaina) 0.526 x 10⁻²⁷ Kg.m b) 5.26 x 10⁻²⁷ Kg.m c) 5.26 x 10⁻²⁷ Kg.m c) 5.26 x 10⁻²⁷ Kg.m 	Joule c) 4.96 x 10^{- 19} Jou nty in momentum is g.m c) 0.0526 x 10 ^{- 27} Kg. n a gas is made to expand	m d) None of these	
a) $\eta = \frac{(T2-T1)}{T_1}$ b) $\eta = \frac{(T2-T1)}{T^2}$ c) $\eta = \frac{(T1-T2)}{T_1}$ d) $\eta = \frac{(T1-T2)}{T_2}$ 5. The de Broglie's wavelength of an electron moving with velocity of 5 x 10 ⁶ m/sec is a) 1.456 x 10 ⁻¹⁰ m b) 0.1456 x 10 ⁻⁸ m c) 14.56 x 10 ⁻⁸ m d) None of these 6. The energy of photon is given by a) $E = hv$ b) $E = \frac{hc}{\lambda}$ c) $E = hc\bar{v}$ d) All of these 7. The energy of photon associated with light of wavelength 3800 A° is a) 5.2 x 10 ⁻¹⁹ Joule b) 0.52 x 10 ⁻¹⁹ Joule c) 52 x 10 ⁻¹⁹ Joule d) None of these 8. According to de-Broglie's equation, the wavelength of a particle is proportional to velocity. a) Directly b) Inversely c) is not d) None of these 9. A photon of wavelength 4000 A° strikes a metal surface with work function 2.12 x 10 ⁻¹⁹ Joule and with kinetic energy is a) 28.4 x 10 ⁻¹⁹ Joule b) 0.284 x 10 ⁻¹⁹ Joule c) 2.84 x 10 ⁻¹⁹ Joule d) None of these 10. The wavelength of a particle having mass 6.62 x 10 ⁻²⁷ Kg moving with speed 10 ³ m/sec is a) 2 x 10 ⁻¹⁰ m b) 1 x 10 ⁻¹⁰ m c) 1 x 10 ⁻¹⁰ cm d) 2 x 10 ⁻¹⁰ cm 11. Heisenberg's uncertainty principle is given by a) $\Delta x \Delta p \ge \frac{h}{4\pi}$ b) $\Delta x \Delta v \ge \frac{h}{4\pi\pi}$ c) $\Delta x m\Delta v \ge \frac{h}{4\pi}$ d) All of these 12. The uncertainty in position & velocity of a particle are 10 ⁻¹⁰ m & 5.27 x 10 ⁻²⁴ m/sec, The mass of particle is a) 0.01 kg b) 1 kg c) 0.10 kg d) 10 kg 13. The magnitude of quantum or photon of energy is a) 0.01 kg b) 1 kg c) 0.10 kg d) 10 kg 15. A saturated solution of NaCI is a a) 0 b) 1 b) 1 a) 0 b) 1 b) 1 b) 1 b) 1 c) 2 d) 3 15. A saturated solution of NaCI is a a) one phase system b) two phase system c) three phase system d) None of these 18. For a pure gas & mixture of two gases, the degree of freedom are a) 0.8 mixture of three gases 02, N2, C02 is a) 0 me phase system b) two phase system c) three phase system d) None of these 18. For a pure gas & mixture of two gases, the degree of freedom	a) first law of Thermodynamics c) Joule Thomson effect	b) second law of The d) Le Chatlier's princ	ermodynamics siple	
a) 1.456 x 10 ⁻¹⁰ m b) 0.1456 x 10 ⁻⁸ m c) 14.56 x 10 ⁻⁸ m d) None of these 6. The energy of photon is given by	a) $\eta = \frac{(T2-T1)}{T1}$ b) $\eta = \frac{(T2-T1)}{T2}$	c) $\eta = \frac{(T1-T2)}{T1}$	d) $\eta = \frac{(T1-T2)}{T2}$	
a)E = hv b) E = $\frac{hc}{\lambda}$ c) E = hc \overline{v} d) All of these 7. The energy of photon associated with light of wavelength 3800 A° is	a) 1.456 x 10⁻¹⁰ m b) 0.1456 x 10 ⁻⁸ m	c) 14.56 x 10 ⁻⁸ m d) N	10° m/sec is lone of these	
7. The energy of photon associated with light of wavelength 3800 A° is a) 5.2 x 10 ⁻¹⁹ Joule b) 0.52 x 10 ⁻¹⁹ Joule c) 52 x 10 ⁻¹⁹ Joule d) None of these 8. According to de-Broglie's equation, the wavelength of a particle is proportional to velocity. a) Directly b) Inversely c) is not d) None of these 9. A photon of wavelength 4000 A° strikes a metal surface with work function 2.12 x 10 ⁻¹⁹ Joule and with kinetic energy is a) 28.4 x 10 ⁻¹⁹ Joule b) 0.284 x 10 ⁻¹⁹ Joule c) 2.84 x 10 ⁻¹⁹ Joule d) None of these 10. The wavelength of a particle having mass 6.62 x 10 ⁻²⁷ Kg moving with speed 10 ³ m/sec is a) 2 x 10 ⁻¹⁰ m b) 1 x 10 ⁻¹⁰ m c) 1 x 10 ⁻¹⁰ cm d) 2 x 10 ⁻¹⁰ cm 11. Heisenberg's uncertainty principle is given by a) $\Delta x \Delta p \ge \frac{h}{4\pi}$ b) $\Delta x.\Delta v \ge \frac{h}{4\pi m}$ c) $\Delta x. m\Delta v \ge \frac{h}{4\pi}$ d) All of these 12. The uncertainty in position & velocity of a particle are 10 ⁻¹⁰ m & 5.27 x 10 ⁻²⁴ m/sec, The mass of particle is a) 0.01 kg b) 1 kg c) 0.10 kg d) 10 kg 13. The magnitude of quantum or photon of energy is proportional to wavelength. a) directly b) inversely c) is not d) none of these 14. The decomposition of calcium carbonate is represented by the equation CaCO ₃ (s) \rightarrow CaO(s) + CO ₂ (g) , with number of phases equal to a) 0 b) 1 x c) 2 d) 3 15. A saturated solution of NaCl is a a) one phase system b) two phase system c) three phase system d) None of these 16. Mathematically phase rule can be expressed as a) one phase system b) two phase system c) three phase system d) None of these 18. For a pure gas & mixture of two gases, the degree of freedom are a) 2 & 2 b) 3 & 2 c) 2 & 3 d) 3 & 3 19. Water system has three phases sice, liquid water & water vapour. The number of components in the system are	••••••		d) All of these	
a) Directly b) Inversely c) is not d) None of these 9. A photon of wavelength 4000 A° strikes a metal surface with work function 2.12 x 10 ⁻¹⁹ Joule and with kinetic energy is	 7. The energy of photon associated with light a) 5.2 x 10⁻¹⁹ Joule b) 0.52 x 10⁻¹⁹ J 8. According to de-Broglie's equation, the way 	of wavelength 3800 A° is oule c) 52 x 10 ^{- 19} Joule	e d) None of these	
10. The wavelength of a particle having mass 6.62×10^{-27} Kg moving with speed 10^3 m/sec is a) 2×10^{-10} m b) 1×10^{-10} m c) 1×10^{-10} cm d) 2×10^{-10} cm 11. Heisenberg's uncertainty principle is given by	 a) Directly b) Inversely 9. A photon of wavelength 4000 A° strikes a poule and with kinetic energy is 	metal surface with work fur	nction 2.12 x 10 ⁻¹⁹	
a) 2×10^{-10} m b) 1×10^{-10} m c) 1×10^{-10} cm d) 2×10^{-10} cm 11. Heisenberg's uncertainty principle is given by	10. The wavelength of a particle having mass	oule c) 2.84 x 10^{- 19} Joule 6.62 x 10 ^{- 27} Kg moving v	e d) None of these with speed 10 ³	
 12. The uncertainty in position & velocity of a particle are 10⁻¹⁰ m & 5.27 x 10⁻²⁴ m/sec, The mass of particle is	a) 2 x 10 ⁻¹⁰ m b) 1 x 10⁻¹⁰ m		d) 2 x 10 ^{- 10} cm	
The mass of particle isa) 0.01 kg b) 1 kg c) 0.10 kg d) 10 kg 13. The magnitude of quantum or photon of energy is proportional to wavelength. a) directly b) inversely c) is not d) none of these 14. The decomposition of calcium carbonate is represented by the equation $CaCO_3 (s) \rightarrow CaO(s) + CO_2 (g)$, with number of phases equal to a) 0 b) 1 c) 2 d) 3 15. A saturated solution of NaCl is a a) one phase system b) two phase system c) three phase system d) None of these 16. Mathematically phase rule can be expressed as a) $F = C - P + 2$ b) $F = C - P + 1$ c) $F = P - C + 1$ d)) $F = P - C + 2$ 17. A mixture of three gases O_2 , N_2 , CO_2 is a) one phase system b) two phase system c) three phase system d) None of these 18. For a pure gas & mixture of two gases, the degree of freedom are a) $2 \& 2$ b) $3 \& 2$ c) $2 \& 3$ d) $3 \& 3$ 19. Water system has three phases ice, liquid water & water vapour. The number of components in the system are	a) $\Delta x. \Delta p \ge \frac{h}{4\pi}$ b) $\Delta x. \Delta v \ge \frac{h}{4\pi m}$	c) $\Delta x. m \Delta v \geq \frac{h}{4\pi}$	d) All of these	
 13. The magnitude of quantum or photon of energy is proportional to wavelength. a) directly b) inversely c) is not d) none of these 14. The decomposition of calcium carbonate is represented by the equation CaCO_{3 (s)} → CaO_(s) + CO_{2 (g)}, with number of phases equal to		particle are 10^{-10} m & 5.2	27 x 10 ⁻²⁴ m/sec,	
wavelength. a) directly b) inversely c) is not d) none of these 14. The decomposition of calcium carbonate is represented by the equation $CaCO_3 (s) \rightarrow CaO(s) + CO_2 (g)$, with number of phases equal to a) 0 b) 1 c) 2 d) 3 15. A saturated solution of NaCl is a a) one phase system b) two phase system c) three phase system d) None of these 16. Mathematically phase rule can be expressed as a) $F = C - P + 2$ b) $F = C - P + 1$ c) $F = P - C + 1$ d)) $F = P - C + 2$ 17. A mixture of three gases O_2 , N_2 , CO_2 is a) one phase system b) two phase system c) three phase system d) None of these 18. For a pure gas & mixture of two gases, the degree of freedom are a) $2 \& 2$ b) $3 \& 2$ c) $2 \& 3$ d) $3 \& 3$ 19. Water system has three phases ice, liquid water & water vapour. The number of components in the system are	a) 0.01 kg b) 1 kg			
a) directly b) inversely c) is not d) none of these 14. The decomposition of calcium carbonate is represented by the equation $CaCO_{3}(s) \rightarrow CaO(s) + CO_{2}(g)$, with number of phases equal to a) 0 b) 1 c) 2 d) 3 15. A saturated solution of NaCl is a a) one phase system b) two phase system c) three phase system d) None of these 16. Mathematically phase rule can be expressed as a) $F = C - P + 2$ b) $F = C - P + 1$ c) $F = P - C + 1$ d) $F = P - C + 2$ 17. A mixture of three gases O_2 , N_2 , CO_2 is a) one phase system b) two phase system c) three phase system d) None of these 18. For a pure gas & mixture of two gases, the degree of freedom are a) $2 \& 2$ b) $3 \& 2$ c) $2 \& 3$ d) $3 \& 3$ 19. Water system has three phases ice, liquid water & water vapour. The number of components in the system are	3 1 1	nergy is prop		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ū.	c) is not	d) none of these	
 15. A saturated solution of NaCl is a	$CaCO_{3 (s)} \xrightarrow{\rightarrow} CaO_{(s)} + CO_{2 (g)}$, w	ith number of phases equa	al to	
 a) one phase system b) two phase system c) three phase system d) None of these 16. Mathematically phase rule can be expressed as	a) 0 b) 1 15 A saturated solution of NaCl is a	c) 2	d) 3	
 a) F = C - P + 2 b) F = C - P + 1 c) F = P - C + 1 d) F = P - C + 2 17. A mixture of three gases O₂, N₂, CO₂ is a) one phase system b) two phase system c) three phase system d) None of these 18. For a pure gas & mixture of two gases, the degree of freedom are a) 2 & 2 b) 3 & 2 c) 2 & 3 d) 3 & 3 19. Water system has three phases ice, liquid water & water vapour. The number of components in the system are 	a) one phase system b) two phase sys	tem c) three phase syster	m d) None of these	
 a) one phase system b) two phase system c) three phase system d) None of these 18. For a pure gas & mixture of two gases, the degree of freedom are a) 2 & 2 b) 3 & 2 c) 2 & 3 d) 3 & 3 19. Water system has three phases ice, liquid water & water vapour. The number of components in the system are 	a) $F = C - P + 2$ b) $F = C - P + 1$	c) $F = P - C + 1$	d)) $F = P - C + 2$	
 a) 2 & 2 b) 3 & 2 c) 2 & 3 d) 3 & 3 19. Water system has three phases ice, liquid water & water vapour. The number of components in the system are 	a) one phase system b) two phase system	stem c) three phase syste	em d) None of these	
components in the system are			d) 3 & 3	
• •	19. Water system has three phases ice, liquid water & water vapour. The number of			
	• •		d) 3	

20. For one component system the phase rule is a) $F = 2 - P$ b) $F = 1 - P$	(d)) E – 3 – P
21. At triple point		
 a) Temperature is fixed c) Both Temperature & Pressure are fixed 	b) Pressure	is fixed
c) Both Temperature & Pressure are fixed	d) None of t	hese
22. In a one phase, two component system the c		٥
a) 0 b) 1		d) 3
23. A drop of water is placed in a stoppered bottle system?	e, now many phases a	ire present in the
a) 0 b) 1	c) 2	d) 3
24. A system with zero degree of freedom is kno		
a) invariant b) monovariant	c) bivariant	d) None of these
25. The transition temperature of a substance is t		
a) one enantiomer changes into another b)		
c) all the phases can co-exist in equilibrium		_
26. The reduced phase rule for a condensed syst	tem is	
a) $F' = C - P + 2$ b) $F' = C - P$ c)	$\mathbf{F'} = \mathbf{P} - \mathbf{C} + 3$	d)) $F' = C - P + 1$
27.Sulphur system has four phases rhombic, more	noclinic, liquid & vapou	ur sulphur. It is
a) one componennt system	b) two compor d) None of the	nennt system
c) three component system	a) None of the	se
28. For a bivriant system, the degree of freedom a) 0 b) 1	۱۵	d) 3
29 Temperature of triple point of CO ₂ system is	0) 2	u) 5
29. Temperature of triple point of CO_2 system is a) - 57K b) - 57 °C	c) 57 °C	d) 57K
30. In Pb – Ag system, pure Pb melts at 327 °C,	as % of Ag increases i	in Pb solution the
melting point of lead		
melting point of leada) decreasesb) increases	c) remains constant	d) None of these
 Upper consulate temperature of Nicotine – was 	ater svstem is	
a) 68.5 °C b) 61°C	c) 18.5 °C	d) 208 °C
32. In phenol - water system, inside the curve nu	umber of liquid layers e	existing is
a) 1 b) 2	c) 3	d) 4
33. An engine operating between 150 °C & 25 °C		
Temperature Reservoir, the workdone by this a) 150.5 Joule b) 142.7 Joule		 d) 147 7 Joulo
34. Entropy change of two mole of an ideal gas e	vnande isothermally &	$a_1 147.7 \text{ Joule}$
to 60 m ³ is	sourcementally of	
a) 38.92 Joule/K/mol b) 38.69 Joule/K/mol	c) 38.29 Joule/K/mol	d) 38.09 Joule / K/mol
35. Entropy change of two mole of an ideal gas e	-	
pressure 10 atm. to 2 atm. at 27 °C is		
a) 26.76 Joule/K/mol b) 26.16 Joule/K/mol	c) 27.76 Joule/K/mol	d) 25.76 Joule / K/mol
36. Inversion temperature depends upon		
a) Vander Waal's constant 'a'	b) Vander Waal's con	istant 'b'
c) Vander Waal's constant 'a' & 'b'	d) None of these	
37. Entropy is a measure of		.0
	c) zig - zag motion	
 A process which proceeds of its own accord a) Reversible process 	b) spontaneous pro	
c) non spontaneous process	d) irreversible proces	
39. Entropy is measured in		55
a) cal K ⁻ mol ⁻ b) Joule K ⁻ mol ⁻	c) entropy unit	d) All of these
40.Standard entropy, S° of a substance is		., / of thood
		atm. pressure
a) entropy at 0 °C & 1 atm. pressure c) entropy at 25 °C & 1 atm. pressure	d) entropy at 25 K &	1 atm. pressure
-		