Choose the correct answer of the following

1. Reaction rates can change with
a) Temperature
b) Addition of catalyst
c) Reaction concentration
d) All of these
2. For first order reactions the rate constant k has the unit
a) $\mathrm{Lit} \mathrm{mol}^{-1}$
b) time $^{-1}$
c) mol^{-1} time ${ }^{-1}$
d) mol time Lit^{-1}
3. Reaction rates are generally
a) are constant throughout a reaction
b) are smallest at the beginning \& increase with time
c) are greatest at the beginning \& decrease with time
d) No such generalization can made
4. The reaction $A \rightarrow B$ is a second order reaction. When the conc. of A is 0.50 M , the half life is 8 minute. What is the half life if initial conc. of A is 0.10 M ?
a) 80 min
b) 8 min
C) $\mathbf{4 0} \mathbf{~ m i n}$
d) 4 min
5. As the temperature of a reaction is increased, the rate of reaction increases because the \qquad
a) reactant molecules collide with greater energy b) reactant molecules collide less frequently
c) reactant molecules collide less frequently with greater energy d) activation energy is lowered
6. If the reaction $2 A+3 D \rightarrow$ Product, is first order in $A \&$ second order in D, then rate law will have rate $=$
a) $k[A][D]^{2}$
b) $k[A]^{2}[D]$
c) $k[A]^{2}[D]^{2}$
d) $k[A][D]$
7. for a certain reaction, a plot of $\log [A]$ verses t gives a straight line with slope of $-1.46 \mathrm{sec}^{-1}$. The order of reaction is \qquad
a) 0
b) 1
c) 2
d) 3
8. The thermal decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ to form $\mathrm{NO}_{2} \& \mathrm{O}_{2}$ is a first order reaction. The rate constant for reaction is $5.1 \times 10^{-4} \mathrm{sec}^{-1}$ at 318 K . what is half life of this processs \qquad
a) $3.9 \times 10^{3} \mathrm{sec}$
b) $2.35 \times 10^{3} \mathrm{sec}$
c) $1.0 \times 10^{3} \mathrm{sec}$
d) $1.35 \times 10^{3} \mathrm{sec}$
9. Which of the following does not affect the rate of a chemical reaction ?
a) Enthalpy of a reaction
b) concentration of reactants
c) temperature
d) pressure
10. Rate law relates the rate of chemical reaction to
a) temperature
b) activation energy
c) concentration of reactants
d) reaction mechanism
11. Rate laws for chemical reactions are determined \qquad
a) by examining the coefficients in the balanced chemical equation
b) from the equilibrium constant
c) From the rates of forward and reverse reaction of the system
d) by experiment
12. Rate constant of first order reaction is given by
a) $K=\frac{2.303}{t} \log \frac{a-x}{a}$
b) $K=\frac{2.303}{t} \log \frac{a}{a-x}$
c) $K=\frac{t}{2.303} \log \frac{a}{a-x}$
d) $K=\frac{2.303}{a t} \log \frac{a}{a-x}$
13. Rate constant of zero order reaction is given by \qquad
a) $K=x t$
b) $\mathrm{K}=\frac{x^{2}}{t}$
c) $K=\frac{x}{t}$
d) $K=\frac{a}{x t}$
14. Arhenius equation is given by
a) $K=A T e^{-E a / R T}$
b) $\mathrm{K}=\mathrm{A} \mathrm{e}^{-\mathrm{EaT} / \mathrm{R}}$
c) $K=A e^{-R T / E a}$
d) $\mathbf{K}=\mathbf{A} \mathbf{e}^{-E a / R T}$
15. Rate constant of second order reaction is given by \qquad
a) $K=\frac{2.303}{t} \frac{x}{a-x}$
b) $K=\frac{1}{t} \frac{x}{a-x}$
c) $K=\frac{1}{t} \frac{x}{a(a-x)}$
d) $K=\frac{1}{t} \frac{a(a-x)}{x}$
16. Unit of zero order reaction is given by \qquad
a) $\mathrm{mol} \mathrm{Lit}^{-1} \mathrm{sec}^{-1}$
b) $\mathrm{mol} \mathrm{Lit} \mathrm{sec}^{-1}$
c) $\mathrm{mol}^{-1} \mathrm{Lit}^{-1} \mathrm{sec}^{-1}$
d) None of these
17. Half life of second order reaction is given by \qquad
a) $t_{1 / 2}=\frac{K}{a}$
b) $\mathrm{t}_{1 / 2}=\frac{\mathrm{a}}{\mathrm{K}}$
c) $\mathrm{t}_{1 / 2}=\frac{1}{\mathrm{Ka}}$
d) None of these
18. Powers in the rate law are determined by
a) the principle of detailed balance
b) physical states of reactants \& products
c) Experiment
d) coefficients in balanced chemical reaction
19. The half life of a first order reaction process is \qquad
a) depends on the reactant concentration
b) directly proportional to the concentration
c) inversely proportional to the concentration
d) independent of reactant concentration
20. As temperature increases, the reaction rate
a) decreases
b) decreses then increases
c) increases
d) remains the same
21. Reaction $2 \mathrm{NO}_{g} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}$ proceeds in a single elementary step. This reaction is \qquad
a) unimolecular
b) bimolecular
c) termolecular
d) None of these
22. Why is minimum energy needed for an effective collision?
a) to break the bonds
b) orient the particles correctly
c) particles collides many times
d) to give off heat in a reaction
23. According to chemical kinetic, a reaction can occur
a) if the reactants collide with proper orientation b) if the reactants possess sufficient energy of collision c) if the reactants are able to form a correct transition state d) All of these
24. What happens when molecules collide with less than the activation energy needed for the reaction ?
a) they stick together but do not react
b) they react, but more slowly
c) they react if the bonds are arranged in the correct orinentation
d) they do not react, they simply bounce of each other
25. Reaction $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ is
a) unimolecular
b) bimolecular
c) termolecular
d) None of these
26. The conduction of electricity occurs by direct flow of electrons is known as \qquad
a) Ionic conductors
b) Electronic conductors
c) Electrolytic conductors
d) None of these
27. The specific conductance is \qquad specific resistance
a) equal to
b) directly proportional to
c) reciprocal of
d) None of these
28. On dilution specific conductivity \qquad
a) decreases
b) increases
c) remains same
d) None of these
29. The unit of equivalent conductance is \qquad
a) $\mathrm{Ohm}^{-1} \mathrm{~cm}^{1}$ equt $^{-1}$
b) $\mathrm{Ohm}^{-1} \mathrm{~cm}^{-2}$ equt $^{-1}$
c) $\mathrm{Ohm}^{-1} \mathrm{~cm}^{-1}$ equt ${ }^{-1}$
d) $\mathrm{Ohm}^{-1} \mathrm{~cm}^{2}$ equt $^{-1}$
30. The equivalent conductance with increase in temperature.
a) decreases
b) increases
c) remains same
d) None of these
31. The molar conductance is given by
a) $\mu=\frac{100 \mathrm{~K}}{\mathrm{M}}$
b) $\mu=\frac{K}{100 \mathrm{M}}$
c) $\mu=\frac{K}{1000 \mathrm{M}}$
d) $\mu=\frac{1000 \mathrm{~K}}{\mathrm{M}}$
32. Cell constant is equal to \qquad
a) $\frac{\text { length }}{\text { Area }}$
b) length X Area
c) $\frac{\text { Area }}{\text { length }}$
d) Length + Area
33. What is the cell constant of the cell, if the distance between two electrode is 6.0 cm and area of electrode is $5.0 \mathrm{~cm}^{2}$?
a) 1.2 cm
b) 12 cm
c) $1.2 \mathrm{~cm}^{-1}$
d) $12 \mathrm{~cm}^{-1}$
34. Kohlrausch's law can be expressed as
a) $\lambda_{\infty}=\lambda a-\lambda c$
b) $\lambda_{\infty}=\lambda a+\lambda c$
c) $\lambda_{\infty}=\lambda c-\lambda a$
d) $\lambda_{\infty}=\lambda a x \lambda c$
35. The transport number of the anion is given by \qquad
a) $t_{a}=\frac{v_{a}}{v_{a}+V_{c}}$
b) $t_{a}=\frac{v_{a}}{v_{a}-v_{c}}$
c) $t_{a}=\frac{v_{c}}{v_{a}+v_{c}}$
d) $t_{a}=\frac{v_{c}}{v_{a}-v_{c}}$
36. A strong electrolyte is a substance which dissociates
a) poorly
b) completely
c) both a \& b
d) None of these
37. The transport number of the K^{+}is 0.492 in KCl solution, the transport number of Cl^{-}is
a) 0.492
b) 0.502
c) 0.580
d) 0.508
38. The ionic product of water is \qquad
a) 1×10^{-7}
b) 1×10^{7}
c) $\mathbf{1 \times 1 0 ^ { - 1 4 }}$
d) $1 \times \quad 10^{14}$
39. When a strong acid is titrated against a strong base the end point is the point of \qquad
a) maximum conductance
b) minimum conductance
c) zero conductance
d) None of these
a) 0.492
b) 0.502
c) 0.580
d) 0.508
40. The wavelength of ultraviolet \& visible light of electromagnetic spectrum lies bet ${ }^{n}$.
a) $1000-2000 \mathrm{~A}$
b) more than $8000 \mathrm{~A}^{0}$
c) $2000-8000 \mathrm{~A}^{0}$
d) None of these
41. stops as soon as the incident radiation is cut off.
a) Fluorescence
b) Phosphorescence
c) chemiluminescence
d) None of these
42. The electronic spins are expressed in terms of spin multiplicity which is given by
a) $S+2$
b) $2 S+2$
c) $\mathbf{2 S}+\mathbf{1}$
d) $2 \mathrm{~S}-1$
43. The quantum efficiency of the reaction $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ is \qquad
a) 10 to 10^{2}
b) 10^{-2} to 10^{2}
c) 10^{2} to 10^{4}
d) 10^{4} to 10^{6}
44. Lambert-Beer law is given by the equation \qquad
a) $\log \frac{I}{I_{0}}=-\epsilon C x$
b) $\log \frac{1}{I_{0}}=\epsilon C x$
c) $\log \frac{I}{I_{0}}=-\epsilon C$
d) $\log \frac{I}{I_{0}}=-b x$
45. In a photochemical reaction 75 molecules are reacted to give products by absorption of 25 photons of suitable radiation. The quantum yield is
a) 2
b) 3
c) 25
d) 1
46. Reaction rates can change with
a) Temperature
b) Addition of catalyst
c) Reaction concentration
d) All of these
47. For first order reactions the rate constant k has the unit
a) Lit $^{\mathrm{mol}^{-1}}$
b) time $^{-1}$
c) mol^{-1} time ${ }^{-1}$
d) $\mathrm{mol} \mathrm{time} \mathrm{Lit}^{-1}$
48. Reaction rates are generally
a) are constant throughout a reaction
b) are smallest at the beginning \& increase with time
c) are greatest at the beginning \& decrease with time
d) No such generalization can made
49. The reaction $A \rightarrow B$ is a second order reaction. When the conc. of A is 0.50 M , the half life Is 8 minute. What is the half life if initial conc. of A is 0.10 M ?
a) 80 min
b) 8 min
c) 40 min
d) 4 min
50. As the temperature of a reaction is increased, the rate of reaction increases because the \qquad
a) reactant molecules collide with greater energy b) reactant molecules collide less frequently
c) reactant molecules collide less frequently with greater energy d) activation energy is lowered
51. If the reaction $2 A+3 D \rightarrow$ Product, is first order in $A \&$ second order in D, then rate law will have rate $=$ \qquad
a) $k[A][D]^{2}$
b) $k[A]^{2}[D]$
c) $k[A]^{2}[D]^{2}$
d) $k[A][D]$
52. for a certain reaction, a plot of $\log [A]$ verses t gives a straight line with slope of $-1.46 \mathrm{sec}^{-1}$. The order of reaction is \qquad
a) 0
b) 1
c) 2
d) 3
53. The thermal decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ to form $\mathrm{NO}_{2} \& \mathrm{O}_{2}$ is a first order reaction. The rate constant for reaction is $5.1 \times 10^{-4} \mathrm{sec}^{-1}$ at 318 K . what is half life of this processs \qquad
a) $3.9 \times 10^{3} \mathrm{sec}$
b) $2.35 \times 10^{3} \mathrm{sec}$
c) $1.0 \times 10^{3} \mathrm{sec}$
d) $1.35 \times 10^{3} \mathrm{sec}$
54. Which of the following does not affect the rate of a chemical reaction?
a) Enthalpy of a reaction
b) concentration of reactants
c) temperature
d) pressure
55. Rate law relates the rate of chemical reaction to
a) temperature
b) activation energy
c) concentration of reactants
d) reaction mechanism
56. Rate laws for chemical reactions are determined \qquad
a) by examining the coefficients in the balanced chemical equation
b) from the equilibrium constant
c) From the rates of forward and reverse reaction of the system
d) by experiment
57. Rate constant of first order reaction is given by
a) $K=\frac{2.303}{t} \log \frac{a-x}{a}$
b) $K=\frac{2.303}{t} \log \frac{a}{a-x}$
c) $K=\frac{t}{2.303} \log \frac{a}{a-x}$
d) $K=\frac{2.303}{a t} \log \frac{a}{a-x}$
58. Rate constant of zero order reaction is given by
a) $K=x t$
b) $\mathrm{K}=\frac{x^{2}}{t}$
c) $K=\frac{x}{t}$
d) $K=\frac{a}{x t}$
59. Arhenius equation is given by
a) $K=A T e^{-E a / R T}$
b) $K=A e^{-E a T / R}$
c) $K=A e^{-R T / E a}$
d) $K=A e^{-E a / R T}$
60. Rate constant of second order reaction is given by
a) $K=\frac{2.303}{t} \frac{x}{a-x}$
b) $K=\frac{1}{t} \frac{x}{a-x}$
c) $K=\frac{1}{t} \frac{x}{a(a-x)}$
d) $K=\frac{1}{t} \frac{a(a-x)}{x}$
61. Unit of zero order reaction is given by \qquad
a) $\mathrm{mol} \mathrm{Lit}^{-1} \mathrm{sec}^{-1}$
b) $\mathrm{mol} \mathrm{Lit} \mathrm{sec}^{-1}$
c) $\mathrm{mol}^{-1} \mathrm{Lit}^{-1} \mathrm{sec}^{-1}$
d) None of these
62. Half life of second order reaction is given by
a) $t_{1 / 2}=\frac{K}{a}$
b) $t_{1 / 2}=\frac{a}{K}$
c) $t_{1 / 2}=\frac{1}{K a}$
d) None of these
63. Powers in the rate law are determined by
a) the principle of detailed balance
b) physical states of reactants \& products
c) Experiment
d) coefficients in balanced chemical reaction
64. The half life of a first order reaction process is \qquad
a) depends on the reactant concentration
b) directly proportional to the concentration
c) inversely proportional to the concentration
d) independent of reactant concentration
65. As temperature increases, the reaction rate
a) decreases
b) decreses then increases
c) increases
d) remains the same
66. Reaction $2 \mathrm{NO}_{g} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}$ proceeds in a single elementary step. This reaction is
a) unimolecular
b) bimolecular
c) termolecular
d) None of these
67. Why is minimum energy needed for an effective collision?
a) to break the bonds
b) orient the particles correctly
c) particles collides many times
d) to give off heat in a reaction
68. According to chemical kinetic, a reaction can occur \qquad
a) if the reactants collide with proper orientation
b) if the reactants possess sufficient energy of collision
c) if the reactants are able to form a correct transition state
d) All of these
69. What happens when molecules collide with less than the activation energy needed for the reaction ?
a) they stick together but do not react
b) they react, but more slowly
c) they react if the bonds are arranged in the correct orinentation
d) they do not react, they simply bounce of each other
70. Reaction $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ is
a) unimolecular
b) bimolecular
c) termolecular
d) None of these
71. The conduction of electricity occurs by direct flow of electrons is known as \qquad
a) Ionic conductors
b) Electronic conductors
c) Electrolytic conductors
d) None of these
72. The specific conductance is \qquad specific resistance
a) equal to
b) directly proportional to
c) reciprocal of
d) None of these
73. On dilution specific conductivity \qquad
a) decreases
b) increases
c) remains same
d) None of these
74. The unit of equivalent conductance is \qquad
a) $\mathrm{Ohm}^{-1} \mathrm{~cm}^{1}$ equt $^{-1}$
b) $\mathrm{Ohm}^{-1} \mathrm{~cm}^{-2}$ equt $^{-1}$
c) $\mathrm{Ohm}^{-1} \mathrm{~cm}^{-1}$ equt ${ }^{-1}$
d) $\mathrm{Ohm}^{-1} \mathrm{~cm}^{2}$ equt $^{-1}$
75. The equivalent conductance \qquad with increase in temperature.
a) decreases
b) increases
c) remains same
d) None of these
76. The molar conductance is given by
a) $\mu=\frac{100 \mathrm{~K}}{\mathrm{M}}$
b) $\mu=\frac{K}{100 \mathrm{M}}$
c) $\mu=\frac{K}{1000 \mathrm{M}}$
d) $\mu=\frac{1000 \mathrm{~K}}{M}$
77. Cell constant is equal to
a) $\frac{\text { length }}{\text { Area }}$
b) length X Area
c) $\frac{\text { Area }}{\text { length }}$
d) Length + Area
78. What is the cell constant of the cell, if the distance between two electrode is 6.0 cm and area of electrode is $5.0 \mathrm{~cm}^{2}$?
a) 1.2 cm
b) 12 cm
c) $1.2 \mathrm{~cm}^{-1}$
d) $12 \mathrm{~cm}^{-1}$
79. Kohlrausch's law can be expressed as
a) $\lambda_{\infty}=\lambda a-\lambda c$
b) $\lambda_{\infty}=\lambda a+\lambda c$
c) $\lambda_{\infty}=\lambda c-\lambda a$
d) $\lambda_{\infty}=\lambda a x \lambda c$
80. The transport number of the anion is given by \qquad
a) $t_{a}=\frac{v_{a}}{v_{a}+v_{c}}$
b) $t_{a}=\frac{v_{a}}{v_{a}-v_{c}}$
c) $t_{a}=\frac{v_{c}}{v_{a}+v_{c}}$
d) $t_{a}=\frac{v_{c}}{v_{a}-V_{c}}$
81. A strong electrolyte is a substance which dissociates \qquad
a) poorly
b) completely
c) both a \& b
d) None of these
82. The transport number of the K^{+}is 0.492 in KCl solution, the transport number of Cl^{-}is \qquad
a) 0.492
b) 0.502
c) 0.580
d) 0.508
83. The ionic product of water is \qquad
a) 1×10^{-7}
b) 1×10^{7}
c) 1×10^{-14}
d) 1×10^{14}
84. When a strong acid is titrated against a strong base the end point is the point of \qquad
a) maximum conductance
b) minimum conductance
c) zero conductance
d) None of these
a) 0.492
b) 0.502
c) 0.580
d) 0.508
85. The wavelength of ultraviolet \& visible light of electromagnetic spectrum lies bet ${ }^{n}$. \qquad
a) $1000-2000 \mathrm{~A}$
b) more than $8000 \mathrm{~A}^{0}$
c) $\mathbf{2 0 0 0 - 8 0 0 0 ~} \mathrm{A}^{0}$
d) None of these
86. stops as soon as the incident radiation is cut off.
a) Fluorescence
b) Phosphorescence
c) chemiluminescence
d) None of these
87. The electronic spins are expressed in terms of spin multiplicity which is given by
a) $S+2$
b) $2 S+2$
c) $\mathbf{2 S}+\mathbf{1}$
d) $2 \mathrm{~S}-1$
88. The quantum efficiency of the reaction $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ is \square
a) 10 to 10^{2}
b) 10^{-2} to 10^{2}
c) 10^{2} to 10^{4}
d) 10^{4} to 10^{6}
89. Lambert-Beer law is given by the equation \qquad
a) $\log \frac{I}{I_{0}}=-\epsilon C x$
b) $\log \frac{I}{I_{0}}=\epsilon C x$
c) $\log \frac{I}{I_{0}}=-\epsilon C$
d) $\log \frac{I}{I_{0}}=-b x$
90. In a photochemical reaction 75 molecules are reacted to give products by absorption of 25 photons of suitable radiation. The quantum yield is \qquad
a) 2
b) 3
c) 25
d) 1
